大数据安全对于保护大量敏感数据至关重要。应用涵盖医疗保健、金融和电子商务等行业。主要功能包括加密、访问控制和异常检测。它确保数据的机密性、完整性和可用性,防止网络威胁和数据泄露。此外,大数据安全支持遵守 GDPR 和 HIPAA 等法规。这种强大的安全框架对于使企业能够利用大数据的潜力,同时维护数据隐私并降低与大规模数据处理相关的风险至关重要。
根据数据桥市场研究, 全球大数据安全市场 2021 年为 197.6 亿美元,预计到 2029 年将达到 521.6 亿美元。市场预计将以复合年增长率 12.90% 预计2022年至2029年。
“网络攻击的频率和复杂程度不断提高推动了市场的增长”
全球网络攻击的频率和复杂性不断增加,推动了大数据安全市场的增长。随着组织处理大量敏感数据,保护其免受网络威胁变得至关重要。大数据安全解决方案提供实时检测、预防和响应网络威胁的高级功能。随着数据泄露和网络事件数量的不断增加,企业正在大力投资强大的安全措施来保护其数据资产,从而推动了对大数据安全解决方案和服务的需求,以确保在当今互联的数字环境中提供全面的保护。
什么限制了 全球大数据安全市场?
“识别和分析敏感数据限制了市场的增长”
识别和分析敏感数据的过程可能会给大数据安全市场的增长带来挑战和限制。随着数据量呈指数级增长,准确识别敏感信息变得复杂。此外,数据加密和访问控制需要大量的计算资源,并可能导致性能权衡。此外,遵守不断发展的数据保护法规需要不断更新和投资安全解决方案。尽管对强大数据保护的需求不断增加,但这些因素可能会阻碍大数据安全措施的采用,从而阻碍市场的扩张。
细分:全球大数据安全市场
全球大数据安全市场根据组件、技术、部署模型、组织规模和垂直行业进行细分。
- 根据组件,市场分为软件和服务。
- 在技术的基础上,市场分为身份、访问管理、安全信息、事件管理、入侵检测系统和 统一威胁管理
- 根据部署模型,市场分为本地、云。
- 根据组织规模,市场分为中小企业和大型企业。
- 根据垂直行业,市场分为 IT 和 ITES、电信、 医疗保健和社会援助、金融和保险、零售贸易、公用事业和其他垂直行业。
区域洞察:北美主导全球大数据安全市场
北美在大数据安全市场中占据主导地位,因为该地区早期采用了先进技术并广泛使用了安全解决方案,预计将在 2022 年至 2029 年的预测期内推动显着增长。此外,预计加强安全措施的实施将在此期间进一步推动市场扩张。
由于强大的数字连接、不断增强的网络安全意识以及跨境数据传输的增加等因素,预计亚太地区在 2022 年至 2029 年的预测期内将出现显着增长。这些因素导致该地区对安全解决方案和服务的需求不断增长。
想要了解更多关于考察访问的信息, https://www.databridgemarketresearch.com/reports/global-big-data-security-market
最近的发展
- 2021 年 8 月,VMware 为其 Carbon Black Cloud Endpoint 引入了漏洞管理模块。通过集成该模块,客户可以将基本的安全功能整合到单个云原生代理和控制台中。新服务增强了可见性并确定了风险的优先级,使安全团队能够专注于有效地解决可利用的漏洞。
- 2021 年 8 月,McAfee Enterprise 的 MVISION Cloud 增强了 Microsoft Dynamics 365(一套业务资源规划和客户关系管理软件工具)的安全功能。这种集成利用基于 API 的无缝云原生方法,由 MVISION Cloud 的安全访问服务边缘 (SASE) 产品提供。
全球知名的关键参与者 大数据安全 市场包括:
- FlexEnable 有限公司(英国)
- T+ink, Inc.(美国)
- Brewer Science, Inc.(美国)
- 杜邦(美国)
- 帕洛阿尔托研究中心 (PARC) 公司(美国)
- Interlink Electronics, Inc.(美国)
- 薄膜电子 ASA(挪威)
- ISORG(法国)
- Peratech 控股有限公司(英国)
- KWJ Engineering Inc.(美国)
- 富士胶片控股公司(日本)
- 卡纳图(芬兰)
- Interlink Electronics, Inc.(美国)
- Tekscan, Inc.(美国)
以上是报告中涵盖的主要参与者,了解更多、更详尽的全球大数据安全市场公司联系方式列表, https://www.databridgemarketresearch.com/contact
研究方法:全球大数据安全市场
数据收集和基准年分析是使用具有大样本量的数据收集模块完成的。使用市场统计和相关模型对市场数据进行分析和估计。此外,市场份额分析和关键趋势分析是市场报告的主要成功因素。 DBMR研究团队使用的关键研究方法是数据三角测量,涉及数据挖掘、数据变量对市场影响的分析以及初步(行业专家)验证。除此之外,数据模型包括供应商定位网格、市场时间线分析、市场概述和指南、公司定位网格、公司市场份额分析、衡量标准、全球与区域和供应商份额分析。如有进一步询问,请致电分析师。
