亞太地區深度學習神經網路 (DNN) 市場規模、份額和趨勢分析報告—產業概覽及 2032 年預測

请求目录 请求目录 与分析师交谈 与分析师交谈 免费样本报告 免费样本报告 购买前请咨询 提前咨询 立即购买 立即购买

亞太地區深度學習神經網路 (DNN) 市場規模、份額和趨勢分析報告—產業概覽及 2032 年預測

  • ICT
  • Upcoming Report
  • Nov 2021
  • Asia-Pacific
  • 350 页面
  • 桌子數: 220
  • 图号: 60
  • Author : Megha Gupta

通过敏捷供应链咨询解决关税挑战

供应链生态系统分析现已成为 DBMR 报告的一部分

Asia Pacific Deep Learning Neural Networks Dnns Market

市场规模(十亿美元)

CAGR :  % Diagram

Chart Image USD 35.66 Billion USD 300.33 Billion 2024 2032
Diagram Forecast Period
2025 –2032
Diagram Market Size (Base Year)
USD 35.66 Billion
Diagram Market Size (Forecast Year)
USD 300.33 Billion
Diagram CAGR
%
Diagram Major Markets Players
  • LYUDA RESEARCH LLC
  • Alphabet Inc. (Google)
  • IBM
  • Micron Technologies Inc.
  • Neural Technologies Limited

亞太地區深度學習神經網路 (DNN) 市場細分,按組件(硬體、軟體和服務)、應用(圖像識別、自然語言處理、語音識別、資料探勘)、最終用戶(銀行、金融服務和保險 (BFSI)、IT 和電信、醫療保健、零售、汽車、製造、航空航太和國防、安全、其他) - 行業趨勢和預測到 2032 年

深度學習神經網路(DNN)市場

深度學習神經網路(DNN)市場規模

  • 2024 年亞太地區深度學習神經網路 (DNN) 市場規模為356.6 億美元 ,預計 到 2032 年將達到 3,003.3 億美元,預測期內 複合年增長率為 30.52%。
  • 市場顯著擴張的主要驅動力在於人工智慧 (AI) 在智慧家庭技術、醫療保健、汽車和製造業等多個領域的加速應用。互聯設備和物聯網基礎設施的進步也是住宅和商業應用對深度神經網路 (DNN) 需求不斷增長的重要因素。
  • • 此外,對智慧、安全和自動化系統日益增長的需求,正在將深度學習神經網路確立為預測分析、模式識別和智慧決策的基礎技術。這些因素正在推動深度神經網路 (DNN) 成為主流應用,並推動整個亞太地區的快速數位轉型。

深度學習神經網路(DNN)市場分析

  • 深度學習神經網路 (DNN) 正成為亞太地區各行各業數位轉型不可或缺的一部分,尤其是在智慧家庭自動化、安防系統和智慧監控領域。這些先進的演算法使機器能夠以類似人類的精準度執行影像和語音辨識、預測分析和自主決策等任務。
  • 由於智慧技術在住宅和商業環境中的快速應用,亞太地區的深度神經網路 (DNN) 市場正在經歷強勁成長。中國、日本、韓國和印度等國家的政府和企業正在大力投資人工智慧驅動的基礎設施,加速了 DNN 解決方案在城市和半城市地區的部署。
  • 消費者對智慧、安全且可遠端存取的解決方案的需求不斷增長,這也推動了深度神經網路 (DNN) 市場的發展。在智慧家庭生態系統中,DNN 增強了臉部辨識、語音命令整合和行為模式監控等功能,將自動化、個人化和便利性提升到了一個新的水平。
  • 此外,亞太地區物聯網設備的普及、運算能力的提升以及5G基礎設施的不斷擴展,正在促進深度神經網路(DNN)與日常生活應用的無縫融合。這些趨勢正在顯著重塑醫療保健、零售、金融和交通運輸等產業,使深度神經網路成為亞太地區下一代數位經濟的核心。
  • 中國是亞太地區深度學習神經網路 (DNN) 市場快速擴張的主要推動力,對該地區 2025 年至 2032 年預計 33.12% 的複合年增長率做出了重大貢獻。
  • 2024 年,硬體領域佔據了最大的市場收入份額,這得益於 GPU、TPU 和 FPGA 等高效能運算 (HPC) 硬體在 DNN 模型中的訓練和推理方面的部署不斷增加。

報告範圍和深度學習神經網路(DNN)市場細分

屬性

深度學習神經網路(DNN)關鍵市場洞察

涵蓋的領域

  • 按組件(硬體、軟體和服務)
  • 按應用(影像辨識、自然語言處理、語音辨識、資料探勘)
  • 按最終用戶(銀行、金融服務和保險 (BFSI)、IT 和電信、醫療保健、零售、汽車、製造、航空航天和國防、安全、其他)

覆蓋國家

亞太

  • 中國
  • 日本
  • 印度
  • 韓國
  • 新加坡
  • 馬來西亞
  • 澳洲
  • 泰國
  • 印尼
  • 菲律賓
  • 亞太其他地區  

主要市場參與者

  • LYUDA Research, LLC(美國)
  • Alphabet Inc.(Google)(美國)
  • IBM(美國)
  • 美光科技公司(美國)
  • Neural Technologies Limited(英國)
  • NEURODIMENSION, INC.(美國)
  • NEURALWARE(美國)
  • NVIDIA公司(美國)
  • Skymind Inc.(美國)
  • 三星(韓國)
  • 高通科技公司(美國)
  • 英特爾公司(美國)
  • 亞馬遜網路服務公司(美國)
  • 微軟(美國)
  • GMDH LLC.(美國)
  • Sensory Inc.(美國)
  • Ward Systems Group, Inc.(美國)
  • Xilinx公司(美國)
  • Starmind(瑞士)

市場機會

  • DNN 在精準醫療領域的應用日益廣泛
  • 人工智慧新創企業和學術研究中心的興起

加值資料資訊集

除了對市場價值、成長率、細分、地理覆蓋範圍和主要參與者等市場情景的洞察之外,Data Bridge Market Research 策劃的市場報告還包括深入的專家分析、定價分析、品牌份額分析、消費者調查、人口統計分析、供應鏈分析、價值鏈分析、原材料/消耗品概述、供應商選擇標準、PESTLE 分析、波特分析和監管框架。

深度學習神經網路(DNN)市場趨勢

加速人工智慧整合和即時數據處理需求

  • 人工智慧 (AI) 在金融、醫療、零售和製造等多個領域的日益融合,顯著提升了對深度學習神經網路 (DNN) 的需求。企業越來越多地利用 DNN 來完成預測分析、客戶行為建模、詐欺偵測和個人化推薦系統等需要即時、高精度資料解讀的任務。
  • 例如,2024年3月,IBM增強了其Watsonx AI和資料平台,以支援更複雜的DNN模型,從而實現BFSI領域的智慧自動化和客戶互動。這項進步使金融機構能夠透過AI驅動的洞察來增強即時風險評估並改善客戶體驗。
  • 此外,深度神經網路 (DNN) 能夠即時處理影像、語音和視訊等非結構化數據,使其成為現代人工智慧應用中不可或缺的一部分。隨著企業專注於數位轉型,採用可擴展、雲端整合的深度神經網路 (DNN) 解決方案對於保持競爭力和實現營運效率至關重要。

深度學習神經網路(DNN)市場動態

司機

“智慧型設備和物聯網生態系統的擴展”

  • 物聯網 (IoT) 設備的激增以及智慧基礎設施的日益普及,正在加速深度神經網路 (DNN) 在邊緣的部署。 DNN 透過降低延遲並實現在地化處理,支援自動駕駛汽車、智慧家庭系統和工業自動化設備等連網設備的即時決策。
  • 例如,2024 年 4 月,高通技術公司推出了整合先進 DNN 模型的 AI 邊緣運算平台,以增強交通管制和能源管理等智慧城市應用的回應能力。
  • DNN 與物聯網和邊緣運算的整合預計將推動各個領域的強勁需求,特別是在亞太地區、美國和歐洲部分地區等智慧基礎設施投資強勁的地區。

克制/挑戰

計算成本高,能耗高

  • 深度學習神經網路 (DNN) 市場面臨的一大挑戰是訓練和部署複雜模型所需的巨大運算能力和能源。這些需求通常需要使用高效能 GPU、大規模資料儲存和先進的冷卻系統,這會增加營運成本。
  • 這對中小企業(SME)構成了障礙,尤其是在基礎設施和資金取得可能有限的發展中國家。此外,隨著環境永續性成為全球優先事項,訓練大型深度神經網路(DNN)所帶來的高碳足跡正受到監管機構和利害關係人的嚴格審查。
  • 因此,該行業面臨開發更高效演算法和低功耗 AI 硬體的壓力,以使 DNN 的採用更加永續且在所有經濟階層中均可使用。

深度學習神經網路(DNN)市場範圍

市場根據組件、應用和最終用戶進行細分。

  • 按組件

根據組件,深度學習神經網路 (DNN) 市場可細分為硬體、軟體和服務。硬體部分在 2024 年佔據了最大的市場收入份額,這得益於 GPU、TPU 和 FPGA 等高效能運算 (HPC) 硬體在 DNN 模型訓練和推理中的部署日益增多。企業和研究機構對可擴展深度學習基礎設施的需求日益增長,進一步推動了對 AI 專用硬體的需求。

預計軟體領域將在2025年至2032年期間實現最快的複合年增長率,這得益於深度學習框架(如TensorFlow、PyTorch和MXNet)的進步,以及自然語言處理、電腦視覺和推薦系統預訓練模型和庫的使用增加。基於雲端的AI平台也透過簡化模型開發和部署來推動這一成長。

  • 按應用

根據應用,深度學習神經網路 (DNN) 市場細分為影像辨識、語音辨識、自然語言處理 (NLP) 和資料探勘。影像辨識領域在 2024 年佔據了最大的市場份額,這得益於其在自動駕駛汽車、醫療診斷、臉部辨識和監控系統中的廣泛應用。卷積神經網路 (CNN) 在視覺數據分析和即時影像處理中的應用日益增多,顯著推動了該領域的成長。

預計自然語言處理 (NLP) 領域將在 2025 年至 2032 年期間實現最快成長,這得益於生成式人工智慧、虛擬助理、聊天機器人、情緒分析工具以及人工智慧翻譯服務的快速發展。 NLP 在客戶服務、教育和企業自動化領域不斷擴展的實用性將繼續推動市場發展。

  • 按最終用戶

根據最終用戶,深度學習神經網路 (DNN) 市場細分為銀行、金融服務和保險 (BFSI)、IT 和電信、醫療保健、零售、汽車、製造、航空航太和國防、安全等。受即時網路優化、異常檢測和預測性維護需求的推動,IT 和電信領域在 2024 年佔據了市場主導地位。電信營運商正在利用 DNN 來改善客戶體驗,並透過智慧虛擬代理和數據分析實現服務交付的自動化。

預計醫療保健領域將在2025年至2032年間以最快的複合年增長率成長,這得益於深度神經網路(DNN)在醫學影像、藥物研發、診斷和病患風險評估等領域的日益普及。深度學習模式處理大量非結構化醫療資料的能力正在徹底改變個人化醫療,並加速研發工作流程。

深度學習神經網路(DNN)市場區域分析

  • 中國是亞太地區深度學習神經網路 (DNN) 市場快速擴張的主要推動力,對該地區 2025 年至 2032 年預計 33.12% 的複合年增長率做出了重大貢獻。
  • 該國的成長得益於政府透過「下一代人工智慧發展規劃」等國家策略對人工智慧的大量投資,促進了 DNN 在各行業的廣泛整合。
  • 中國龐大的消費群體和智慧城市計畫正在推動基於 DNN 的解決方案在臉部辨識、智慧監控、自動駕駛汽車和個人化電子商務體驗領域的普及。
  • 此外,百度、阿里巴巴、騰訊、華為等國內強勢企業正積極研發人工智慧晶片、雲端平台、深度學習框架,推動DNN應用更快、更在地化部署。
  • 該國低成本的電子製造生態系統,加上廣泛的 5G 基礎設施部署,也降低了進入門檻,並使基於 DNN 的系統在城市和農村市場中被採用。
  • 隨著中國將自己定位為全球人工智慧超級大國,本土深度學習神經網路 (DNN) 市場正受益於積極的創新、有利的政策框架以及日益加強的企業和政府合作,進一步鞏固其在亞太地區的領導地位。

日本深度學習神經網路 (DNN) 市場洞察

日本深度學習神經網路 (DNN) 市場正經歷顯著成長,這得益於其先進的技術格局、日益增長的自動化需求以及高度城市化的社會。日本對機器人技術和人工智慧驅動系統的高度重視,與 DNN 在即時分析、醫療診斷、汽車系統和智慧家庭應用領域的日益普及相得益彰。日本人口老化也為依賴 DNN 演算法來提升安全性、便利性和護理品質的人工智慧輔助技術創造了機會。

印度深度學習神經網路 (DNN) 市場洞察

印度深度學習神經網路 (DNN) 市場預計將快速成長,這得益於其不斷擴張的數位生態系統、蓬勃發展的科技新創企業環境,以及政府透過「國家人工智慧戰略」和「數位印度」等舉措不斷加強對人工智慧的重視。隨著醫療保健、金融服務業 (BFSI) 和電子商務等行業快速數位化,對基於 DNN 的詐欺檢測、客戶分析和個人化推薦工具的需求也隨之激增。此外,印度成本敏感型市場正受益於基於雲端和開源 DNN 框架的興起,從而推動其廣泛實驗和應用。

深度學習神經網路(DNN)市場份額

深度學習神經網路 (DNN) 產業主要由知名公司主導,其中包括:

  • LYUDA Research, LLC(美國)
  • Alphabet Inc.(Google)(美國)
  • IBM(美國)
  • 美光科技公司(美國)
  • Neural Technologies Limited(英國)
  • NEURODIMENSION, INC.(美國)
  • NEURALWARE(美國)
  • NVIDIA公司(美國)
  • Skymind Inc.(美國)
  • 三星(韓國)
  • 高通科技公司(美國)
  • 英特爾公司(美國)
  • 亞馬遜網路服務公司(美國)
  • 微軟(美國)
  • GMDH LLC.(美國)
  • Sensory Inc.(美國)
  • Ward Systems Group, Inc.(美國)
  • Xilinx公司(美國)
  • Starmind(瑞士)

亞太地區深度學習神經網路(DNN)市場最新發展

  • 2025年2月,中國國家發展委員會和半導體公司公佈了具有里程碑意義的監管改革,以支援開源、特定領域的深度神經網路(DNN)模型。這項措施旨在透過實現在價格合理的GPU設備上進行訓練,促進本土創新,並減少對外國基礎設施的依賴,從而實現先進人工智慧開發的民主化。
  • 2024年,華為對其開源深度學習框架MindSpore (v2.3)進行了全面升級,針對鴻蒙OS和昇騰晶片上基於ARM的NPU進行了優化。此次更新增強了亞太地區智慧型手機、物聯網設備和邊緣運算平台的設備上深度神經網路(DNN)效能。
  • 2025年2月,《自然》雜誌報導,中國和西方人工智慧模型之間的競爭正在加劇,中國小型深度神經網路的效能差距正在縮小。這反映出亞太地區高品質、本地開發的神經網路模型生態系統日趨成熟。
  • 2025年初,本源量子與鳳凰科技合作,利用其「悟空」超導量子晶片進行深度神經網路(DNN)訓練。這項在中國的前沿合作標誌著人們對量子運算與神經網路工作流程相結合的興趣日益濃厚。
  • 2025年6月,MLANN 2025大會在中國廈門舉辦,匯集了機器學習和神經網路領域的頂尖研究人員和業界從業人員。這項活動展示了醫療保健、機器人技術和智慧製造領域的全新架構、最佳化技術以及深度神經網路 (DNN) 的實際應用。


SKU-

Get online access to the report on the World's First Market Intelligence Cloud

  • Interactive Data Analysis Dashboard
  • Company Analysis Dashboard for high growth potential opportunities
  • Research Analyst Access for customization & queries
  • Competitor Analysis with Interactive dashboard
  • Latest News, Updates & Trend analysis
  • Harness the Power of Benchmark Analysis for Comprehensive Competitor Tracking
Request for Demo

研究方法

数据收集和基准年分析是使用具有大样本量的数据收集模块完成的。该阶段包括通过各种来源和策略获取市场信息或相关数据。它包括提前检查和规划从过去获得的所有数据。它同样包括检查不同信息源中出现的信息不一致。使用市场统计和连贯模型分析和估计市场数据。此外,市场份额分析和关键趋势分析是市场报告中的主要成功因素。要了解更多信息,请请求分析师致电或下拉您的询问。

DBMR 研究团队使用的关键研究方法是数据三角测量,其中包括数据挖掘、数据变量对市场影响的分析和主要(行业专家)验证。数据模型包括供应商定位网格、市场时间线分析、市场概览和指南、公司定位网格、专利分析、定价分析、公司市场份额分析、测量标准、全球与区域和供应商份额分析。要了解有关研究方法的更多信息,请向我们的行业专家咨询。

可定制

Data Bridge Market Research 是高级形成性研究领域的领导者。我们为向现有和新客户提供符合其目标的数据和分析而感到自豪。报告可定制,包括目标品牌的价格趋势分析、了解其他国家的市场(索取国家列表)、临床试验结果数据、文献综述、翻新市场和产品基础分析。目标竞争对手的市场分析可以从基于技术的分析到市场组合策略进行分析。我们可以按照您所需的格式和数据样式添加您需要的任意数量的竞争对手数据。我们的分析师团队还可以为您提供原始 Excel 文件数据透视表(事实手册)中的数据,或者可以帮助您根据报告中的数据集创建演示文稿。

Frequently Asked Questions

市场是基于 亞太地區深度學習神經網路 (DNN) 市場細分,按組件(硬體、軟體和服務)、應用(圖像識別、自然語言處理、語音識別、資料探勘)、最終用戶(銀行、金融服務和保險 (BFSI)、IT 和電信、醫療保健、零售、汽車、製造、航空航太和國防、安全、其他) - 行業趨勢和預測到 2032 年 进行细分的。
在2024年,亞太地區深度學習神經網路 (DNN) 市場的规模估计为35.66 USD Billion美元。
亞太地區深度學習神經網路 (DNN) 市場预计将在2025年至2032年的预测期内以CAGR 30.52%的速度增长。
市场上的主要参与者包括LYUDA RESEARCH LLC, Alphabet Inc. (Google), IBM, Micron Technologies Inc., Neural Technologies Limited。
Testimonial