Global Ai Agriculture Market
市场规模(十亿美元)
CAGR :
%
USD
2.08 Billion
USD
10.49 Billion
2025
2032
| 2026 –2032 | |
| USD 2.08 Billion | |
| USD 10.49 Billion | |
|
|
|
|
全球農業人工智慧市場,按產品(硬體、軟體和服務)、技術(機器學習 (ML)、電腦視覺、自然語言處理 (NLP)、機器人與自動化等)、應用(精準農業、牲畜監測、天氣預報、土壤管理、作物健康監測、供應鏈優化等)、部署模式(本地和雲端)、最終用戶(農場、農業、農業、農業發展公司、研究機構等趨勢
農業人工智慧市場分析及規模
在幾個關鍵因素的推動下,全球農業人工智慧市場可望大幅成長。主要驅動因素是 TEM 解決方案可大幅降低成本,這對於旨在優化電信支出的企業具有吸引力。行動電話和其他可攜式裝置的日益普及進一步刺激了對有效費用管理解決方案的需求。 TEM 提供關鍵的費用透明度,使組織能夠更好地了解和控制其電信支出。此外,物聯網和基於雲端的應用程式的興起導致了對 TEM 解決方案的更高需求,因為這些技術為電信費用管理帶來了新的複雜性。然而,市場面臨限制,特別是遵守不同地區不同的電信法規和合規要求的挑戰,這使得實施和管理變得複雜。儘管存在這些挑戰,但仍有相當大的成長機會。電信費用管理自動化技術提供了重大機遇,TEM 解決方案的外包也是如此,它可以提供成本效益和專業知識。
Data Bridge Market Research 分析稱,全球農業人工智慧市場預計到 2032 年將達到 104.9 億美元價值,預測期內複合年增長率為 22.39%,到 2025 年將達到 20.8 億美元。全球農業人工智慧市場報告還全面涵蓋了定價分析、專利分析和技術進步。
|
報告指標 |
細節 |
|
預測期 |
2025 至 2032 年 |
|
基準年 |
2024 |
|
歷史歲月 |
2023 年(2018-2022 年) |
|
定量單位 |
收入(十億美元) |
|
涵蓋的領域 |
按提供(硬體、軟體和服務)、技術(機器學習 (ML)、 電腦視覺、 自然語言處理 (NLP)、機器人與自動化等)、應用(精準農業、 牲畜監測、天氣預報、土壤管理、作物健康監測、供應鏈優化等)、部署模式(本地和雲端)、最終用戶(農場、農業科技公司、農化公司、研究機構等) |
|
覆蓋國家 |
美國、加拿大和墨西哥、德國、法國、英國、荷蘭、瑞士、比利時、俄羅斯、義大利、西班牙、土耳其、歐洲其他地區、中國、日本、印度、韓國、新加坡、馬來西亞、澳洲、泰國、印尼、菲律賓、亞太其他地區、沙烏地阿拉伯、阿聯酋、南非、埃及、以色列、中東和非洲其他地區、巴西、阿根廷和南美洲其他地區 |
|
涵蓋的市場參與者 |
迪爾公司、IBM、微軟、Google、OpenAI、Open Text Corporation、ClimateAi、AgEagle Aerial Systems Inc.、CNH Industrial NV、AGCO Corporation、KUBOTA Corporation、YANMAR HOLDINGS CO., LTD。 、SYNGENTA GLOBAL、Corteva 與 Bowery Farming Inc. 等 |
市場定義
全球農業人工智慧市場 涵蓋 利用人工智慧來改善農業實踐的技術和解決方案。這包括機器學習、電腦視覺和機器人技術,以優化作物管理、精準農業和資源分配。該市場涵蓋用於數據分析、自動化機械和預測分析的人工智慧驅動工具,旨在提高農業經營的效率、產量和永續性。它具有廣泛的應用範圍,包括作物監測、土壤管理、害蟲控制和供應鏈優化。
全球農業人工智慧市場動態
驅動程式
- 提高作物監測和產量預測的準確性
農業中的人工智慧(AI)提高了作物監測和產量預測的準確性。透過利用機器學習演算法和數據分析,人工智慧可以分析來自各種來源的大量數據,例如衛星圖像、土壤感測器和天氣預報。這使農民能夠監測作物健康狀況,識別蟲害並更準確地預測產量。因此,人工智慧驅動的洞察力有助於優化資源配置,改善決策並提高整體農業生產力。
例如,
- 2021 年 7 月,根據 Gramener 發布的博客,使用機器學習和人工智慧預測作物產量變得越來越重要。文章討論了空間分析和物聯網設備如何增強作物監測和產量預測。人工智慧和機器學習模型利用衛星影像和氣候數據,透過評估土壤條件和天氣模式提高了預測作物產量的準確性。這些技術的使用使農業生產者受益,因為可以實現遠端監控、高效的資源映射和預測分析,有助於更好的決策和規劃。這項進步有利於更有效的作物管理
利用人工智慧提高農業技術的實施率
利用人工智慧加強更好農業技術的實施 涉及優化水、肥料和農藥等投入品的使用。人工智慧驅動的解決方案可以精確管理這些資源,確保它們僅在需要時有效應用。透過最大限度地減少浪費和最大限度地提高作物產量,可以降低成本並提高生產力,最終實現更永續、更有利可圖的農業實踐。
例如,
- 2024年1月,根據Intellias發表的一篇文章,人工智慧透過改進農業技術對農業產生了重大影響。人工智慧實現了水、肥料和農藥的精準管理,降低了成本並提高了生產力。自動化系統優化了灌溉和施肥,從而提高了作物產量和資源效率。這些進步支持了更永續、更有利可圖的農業實踐,最終透過提高產量和節省成本使農民受益
機會
- 電信費用管理自動化技術
電信費用管理 (TEM) 的自動化技術簡化了流程、提高了準確性並降低了成本。透過利用自動化工具和軟體, 電信業者 和企業可以有效管理發票、追蹤費用並即時分析使用模式。這項技術提高了透明度和控制力,並實現了基於數據驅動的洞察力的主動決策。此外,自動化可最大限度地減少人為錯誤,確保符合監管要求,並優化資源配置,將 TEM 轉變為策略資產
例如,
- 2022 年 7 月,根據 Brightfin 發布的一篇文章,切換到自動化電信費用管理系統帶來了多項好處。首先,它顯著減少了與電信問題相關的幫助台工單數量,釋放了 IT 資源。這種自動化處理還可以節省員工的時間,讓他們能夠處理發票處理和費用管理等日常任務,從而專注於更關鍵的項目。此外,自動化減少了人為錯誤,確保了操作的一致性和效率。最後,該系統提供了有價值的數據洞察,並透過簡化的電信管理流程幫助降低成本
- 根據PAG發表的一篇文章,自動化正在改變電信費用管理。它簡化了監控使用情況和核對發票等任務,這對醫院和醫療保健組織特別有益。自動化解決方案減少了審計所花費的時間和精力,透過優化設備使用和電信合約實現了顯著的節省
克制/挑戰
- 持續的資料隱私和安全問題
儘管農業人工智慧取得了令人鼓舞的進步,但持續的資料隱私和安全問題掩蓋了這些好處。由於人工智慧系統收集和分析大量敏感的農業數據,包括作物產量、土壤條件和農場運營,因此農民面臨巨大的風險。未經授權存取和洩露這些資料可能會導致嚴重後果,包括智慧財產權的損失、敏感資訊的操縱以及增加受到網路攻擊的脆弱性。這些安全問題破壞了人們對人工智慧技術的信任,並阻礙了其廣泛應用。
例如
- 2023年8月,根據ShardSecure發布的博客,農業面臨日益嚴重的資料隱私和安全問題。網路攻擊,例如 2021 年針對 JBS Foods 的勒索軟體攻擊,凸顯了該產業的脆弱性。隨著精準農業產生大量數據以及物聯網設備的興起,風險也隨之增加。新成立的食品和農業資訊共享與分析中心旨在解決這些問題。然而,許多農業企業仍在努力解決資料安全、合規性以及防範人工智慧相關威脅的問題。改進的安全措施可以保護敏感資料並降低代價高昂的中斷風險,從而為公司帶來好處
後新冠疫情對全球農業人工智慧市場的影響
後新冠疫情情勢對全球市場產生了重大影響。然而,隨著經濟逐漸復甦,人們對基礎建設的關注度不斷提高,導致專案數量出現復甦。該行業正在適應新規範,透過加強安全協議和數位技術來簡化流程。隨著建設項目恢復勢頭,電信服務需求正在反彈,為市場參與者在後疫情時代為國家基礎設施成長做出貢獻提供了機會。
最新動態
例如,
- 2024 年 6 月,TeeJet Technologies 推出了 FM9380-F75 電磁流量計,採用創新的無移動部件設計,可實現免維護運行,優化流體條件下的性能,並具有廣泛的應用兼容性,使其精準農業產品組合受益並提高運營效率
- 2023 年 11 月,久保田公司在 Agritechnica 上展示了 Agri Robo KVT,標誌著自動化農業技術的重大進步。這款增強型拖拉機解決了勞動力短缺問題,提高了安全性,促進了高效耕作,使久保田的市場競爭力和創新領導力得到了提升
全球農業人工智慧市場範圍
農業人工智慧市場分為五個顯著的部分,分別基於產品、技術、應用、部署模式和最終用戶。這些細分市場之間的成長將幫助您分析行業中的微薄成長細分市場,並為用戶提供有價值的市場概覽和市場洞察,幫助他們做出策略決策,確定核心市場應用。
本研究報告將全球農業人工智慧市場分為以下幾個部分:
提供
- 硬體
- 軟體
- 服務
根據產品類型,市場分為硬體、軟體和服務。
科技
- 機器學習 (ML)
- 電腦視覺
- 自然語言處理 (NLP)
- 機器人與自動化
- 其他的
根據技術,市場分為機器學習 (ML)、電腦視覺、自然語言處理 (NLP)、機器人和自動化等。
應用
- 精準農業
- 牲畜監測
- 天氣預報
- 土壤管理
- 作物健康監測
- 供應鏈優化
- 其他的
根據應用,市場細分為精準農業、牲畜監測、天氣預報、土壤管理、作物健康監測、供應鏈優化等。
部署模式
- 雲
- 本地部署
根據部署模式,市場分為雲端和本地。
最終用戶
- 農場
- 農業科技公司
- 農業化學品公司
- 研究機構
- 其他的
根據最終用戶,市場分為農場、農業科技公司、農業化學品公司、研究機構和其他。
全球農業人工智慧市場
全球農業人工智慧市場分為五個顯著的部分,分別基於產品、技術、應用、部署模式和最終用戶。全球農業物聯網 (IOT) 市場涵蓋的國家包括北美的美國、加拿大和墨西哥、德國、法國、英國、荷蘭、瑞士、比利時、俄羅斯、義大利、西班牙、土耳其、歐洲其他地區、中國、日本、印度、韓國、新加坡、馬來西亞、澳洲、泰國、印尼、菲律賓、亞太其他地區、沙烏地阿拉伯、阿聯酋、南非、埃及、以色列、中東和非洲其他地區。
在北美,美國是硬體組件供應商數量最多的國家。此外,在歐洲,英國憑藉其全國的技術進步而佔據主導地位。在亞太地區,中國佔據主導地位,因為該國是該地區最大的硬體零件製造商。
報告的國家部分還提供了影響市場當前和未來趨勢的單一市場影響因素和市場監管變化。下游和上游價值鏈分析、技術趨勢、波特五力分析、案例研究等數據點是用來預測各國市場情境的一些指標。此外,在對國家數據進行預測分析時,還考慮了亞太地區品牌的存在和可用性,以及由於來自本地和國內品牌的大量或稀缺的競爭、國內關稅和貿易路線的影響而面臨的挑戰。
農業人工智慧的競爭格局與全球市場份額分析
全球農業人工智慧市場競爭格局提供了競爭對手的詳細資訊。詳細資訊包括公司概況、公司財務、收入、市場潛力、研發投資、新市場計劃、亞太和東南亞業務、生產基地和設施、生產能力、公司優勢和劣勢、產品發布、產品寬度和廣度、應用主導地位。以上提供的數據點僅與公司對全球農業人工智慧市場的關注度有關。全球農業人工智慧市場的一些主要參與者包括:Open Text Corporation、OpenAI、VALMONT INDUSTRIES, INC.、AGCO Corporation 和 IBM 等。
SKU-
Get online access to the report on the World's First Market Intelligence Cloud
- Interactive Data Analysis Dashboard
- Company Analysis Dashboard for high growth potential opportunities
- Research Analyst Access for customization & queries
- Competitor Analysis with Interactive dashboard
- Latest News, Updates & Trend analysis
- Harness the Power of Benchmark Analysis for Comprehensive Competitor Tracking
研究方法
数据收集和基准年分析是使用具有大样本量的数据收集模块完成的。该阶段包括通过各种来源和策略获取市场信息或相关数据。它包括提前检查和规划从过去获得的所有数据。它同样包括检查不同信息源中出现的信息不一致。使用市场统计和连贯模型分析和估计市场数据。此外,市场份额分析和关键趋势分析是市场报告中的主要成功因素。要了解更多信息,请请求分析师致电或下拉您的询问。
DBMR 研究团队使用的关键研究方法是数据三角测量,其中包括数据挖掘、数据变量对市场影响的分析和主要(行业专家)验证。数据模型包括供应商定位网格、市场时间线分析、市场概览和指南、公司定位网格、专利分析、定价分析、公司市场份额分析、测量标准、全球与区域和供应商份额分析。要了解有关研究方法的更多信息,请向我们的行业专家咨询。
可定制
Data Bridge Market Research 是高级形成性研究领域的领导者。我们为向现有和新客户提供符合其目标的数据和分析而感到自豪。报告可定制,包括目标品牌的价格趋势分析、了解其他国家的市场(索取国家列表)、临床试验结果数据、文献综述、翻新市场和产品基础分析。目标竞争对手的市场分析可以从基于技术的分析到市场组合策略进行分析。我们可以按照您所需的格式和数据样式添加您需要的任意数量的竞争对手数据。我们的分析师团队还可以为您提供原始 Excel 文件数据透视表(事实手册)中的数据,或者可以帮助您根据报告中的数据集创建演示文稿。

