Global Ai As A Service Aiaas Market
市场规模(十亿美元)
CAGR :
%
USD
91.00 Million
USD
850.83 Million
2024
2032
| 2025 –2032 | |
| USD 91.00 Million | |
| USD 850.83 Million | |
|
|
|
|
全球情境感知和電腦視覺)、企業規模(大型企業和中小型企業)、部署模式(公有雲、私有雲和混合雲)、產品(基礎設施即服務、平台即服務和軟體即服務)、最終用戶(BFSI、IT 和電信、零售業和電子商務、工業和工業企業 20 年工業和電信
人工智慧即服務(AIaaS)市場規模
- 2024 年全球人工智慧即服務 (AIaaS) 市場規模為9,100 萬美元 ,預計 到 2032 年將達到 8.5083 億美元,預測期內 複合年增長率為 32.20%。
- 市場成長主要得益於醫療保健、金融、零售和製造等行業越來越多地採用人工智慧應用程序,這些行業基於雲端的部署提供了可擴展且經濟高效的高級機器學習工具存取方式
- 此外,Google、微軟和亞馬遜等科技巨頭不斷增加對人工智慧雲端基礎設施和工具的投資,顯著提升了AIaaS平台的可近性。這些發展正在推動企業級人工智慧集成,從而加速整體市場的擴張。
人工智慧即服務(AIaaS)市場分析
- AIaaS 平台提供基於雲端的人工智慧工具和服務,例如機器學習、自然語言處理和電腦視覺,由於其可擴展性、成本效益和易於集成,正日益成為各行各業數位轉型計畫不可或缺的一部分。
- AIaaS 需求的激增主要源自於雲端運算的快速普及、對數據驅動決策的日益依賴,以及醫療保健、金融服務、零售和製造等領域對即時分析的需求
- 北美在 AIaaS 市場佔據主導地位,2024 年的收入份額最高,為 38.7%,這得益於亞馬遜網路服務 (AWS)、微軟 Azure 和谷歌雲端等領先雲端服務供應商的存在,以及高度發達的 IT 基礎設施和強勁的企業 AI 採用率,尤其是在美國
- 由於數位化轉型加速、科技新創企業生態系統不斷擴大以及中國、印度和韓國等國家政府對人工智慧基礎設施的投資不斷增加,亞太地區預計將在預測期內成為 AIaaS 市場成長最快的地區
- 機器學習領域預計將在 2025 年佔據 AIaaS 市場的主導地位,佔據相當大的份額,這得益於其在預測分析、推薦引擎、欺詐檢測和各行業的自主系統中的廣泛應用
報告範圍和人工智慧即服務 (AIaaS) 市場細分
|
屬性 |
人工智慧即服務 (AIaaS) 關鍵市場洞察 |
|
涵蓋的領域 |
|
|
覆蓋國家 |
北美洲
歐洲
亞太
中東和非洲
南美洲
|
|
主要市場參與者 |
|
|
市場機會 |
|
|
加值資料資訊集 |
除了市場價值、成長率、市場區隔、地理覆蓋範圍、市場參與者和市場情景等市場洞察之外,Data Bridge 市場研究團隊策劃的市場報告還包括深入的專家分析、進出口分析、定價分析、生產消費分析和 pestle 分析。 |
人工智慧即服務 (AIaaS) 市場趨勢
“透過可擴展的雲端平台實現人工智慧民主化”
- 全球人工智慧即服務 (AIaaS) 市場的一個重要且正在加速發展的趨勢是透過可擴展且經濟高效的雲端平台實現人工智慧功能的民主化,使各種規模的組織都可以利用先進的人工智慧工具,而無需廣泛的基礎設施或內部專業知識
- 例如,2024 年 4 月,亞馬遜網路服務 (AWS) 擴展了其 AIaaS 產品,推出了新的生成式 AI 服務,其中包括 Amazon Bedrock,它允許企業使用來自 Anthropic、AI21 Labs 和 Stability AI 等頂級 AI 公司的基礎模型來構建和擴展生成式 AI 應用程式
- 同樣,Google雲端於 2023 年 8 月推出 Vertex AI Search and Conversation,賦能開發者創建複雜的企業級搜尋和聊天機器人工具,以最少的編碼工作將 AI 整合到工作流程中。這些產品旨在加快價值實現速度,並降低 AI 實施的門檻。
- AIaaS 平台越來越多地整合 AutoML、低程式碼/無程式碼介面和預訓練模型,讓技術背景有限的使用者也能有效地建置、部署和管理 AI 模型。微軟的 Azure OpenAI 服務就是一個突出的例子,它為企業提供對 GPT 等大型語言模型的 API 訪問,以便將其整合到業務流程中。
- AIaaS 與 CRM、ERP 和分析平台等企業軟體生態系統的整合趨勢日益增長,這推動了企業尋求提升生產力、客戶體驗和決策能力的需求。 Salesforce 和 SAP 等公司正在將 AIaaS 工具嵌入其平台,以提供預測性洞察和智慧自動化。
- 隨著企業持續優先考慮敏捷性和數位轉型,醫療、金融、電子商務和製造等行業對可訪問、可擴展和整合的人工智慧服務的需求正在激增,從而重塑了對營運智慧和效率的期望
人工智慧即服務 (AIaaS) 市場動態
司機
“數位轉型和可擴展人工智慧部署帶來的需求不斷增長”
- 各行各業對數位轉型的日益重視以及對可擴展、經濟高效的人工智慧解決方案日益增長的需求是人工智慧即服務 (AIaaS) 市場需求的重要驅動力
- 例如,2024 年 3 月,IBM 宣布推出 Watsonx.governance 和其他 AIaaS 增強功能,旨在幫助企業大規模建立負責任且值得信賴的 AI 模型,從而增強了透過雲端提供企業級 AI 解決方案的需求
- 隨著企業面臨越來越大的壓力,需要從海量數據中獲取洞察,AIaaS 平台提供了一個極具吸引力的解決方案,它提供了即用的機器學習和深度學習功能,無需在基礎設施上進行大量的前期投資
- 此外,企業越來越多地採用 AIaaS 應用,例如聊天機器人、預測分析、詐欺偵測和推薦引擎,從而提高營運效率和客戶參與度
- 預先訓練的人工智慧模型、使用者友善介面以及基於 API 的存取方式日益普及,使各種規模的公司都能將人工智慧融入其工作流程。人工智慧的普及化對於缺乏內部人工智慧專業知識的中小企業 (SME) 尤其有利。
- 隨著全球範圍內雲端應用的不斷增長以及企業尋求敏捷、可擴展且經濟高效的技術解決方案,AIaaS 正在成為加速創新、改進決策和獲得競爭優勢的首選部署模式
克制/挑戰
“對資料安全和整合成本的擔憂”
- 圍繞資料安全、隱私和監管合規性的擔憂對人工智慧即服務 (AIaaS) 的廣泛採用構成了重大挑戰,尤其是在企業將敏感資料委託給第三方雲端平台的情況下
- 例如,備受矚目的人工智慧部署中反覆出現資料外洩和模型濫用的報道,使得一些組織對於將 AIaaS 整合到核心營運中持謹慎態度,尤其是在醫療保健和金融等受到嚴格監管的行業
- 確保資料處理安全、端對端加密以及遵守 GDPR 和 HIPAA 等全球標準,對於建立對 AIaaS 解決方案的信任至關重要。微軟和谷歌等供應商已經推出了專用工具來增強資料隱私,並提高模型決策的透明度,但仍存在差距。
- 此外,將 AIaaS 實施到現有 IT 基礎架構中所帶來的高整合和客製化成本可能會阻礙其採用,特別是對於預算和內部技術能力有限的中小型企業 (SME)
- 雖然基於雲端的 AI 平台減少了硬體投資需求,但對熟練人員、API 整合和部署後優化的需求可能會增加總成本。這種財務負擔可能會阻礙一些組織充分發揮 AIaaS 的優勢。
- 克服這些挑戰需要持續努力改進安全框架,提供透明的治理功能,教育使用者負責任地使用人工智慧,並開發更靈活的定價和支援模式,以適應小型企業
人工智慧即服務(AIaaS)市場範圍
市場根據技術、企業規模、部署模式、產品和最終用戶進行細分。
• 依技術
根據技術,AIaaS 市場細分為機器學習、自然語言處理、情境感知和電腦視覺。機器學習領域將在 2025 年佔據最大的市場收入份額,這得益於其在預測分析、異常檢測和自動化等各行各業的廣泛應用。企業青睞機器學習,是因為它能夠利用新數據不斷提升模型準確性,使其成為商業智慧和決策流程的關鍵。雲端基礎設施的進步和海量資料集的可用性進一步推動了這一成長。
預計自然語言處理 (NLP) 領域將在 2025 年至 2032 年間實現最快增長,這得益於客戶服務和醫療保健領域對對話式人工智慧、聊天機器人和虛擬助理日益增長的需求。 NLP 能夠理解和解讀人類語言,這對於提升使用者體驗和實現無縫的人機互動至關重要。
• 按企業規模
根據企業規模,AIaaS 市場可細分為大型企業和中小型企業 (SME)。大型企業在 2025 年佔據了最大的市場收入份額,這得益於其雄厚的預算,並專注於利用 AI 提升營運效率和客戶參與度的數位轉型計畫。這些組織受益於客製化的 AIaaS 解決方案,這些解決方案可與現有 IT 生態系統集成,並符合監管標準。
預計中小企業領域將在 2025 年至 2032 年間見證最快的複合年增長率,這得益於 AIaaS 平台日益增長的經濟性和可訪問性,這些平台使中小企業能夠透過自動化工作流程、增強行銷策略和獲得數據驅動的洞察力來有效競爭,而無需大量的前期投資。
• 依部署模式
根據部署模式,AIaaS 市場可細分為公有雲、私有雲和混合雲。公有雲憑藉其成本效益、可擴展性以及對各類業務的便捷訪問,在 2025 年佔據了最大的市場收入份額。公有雲平台提供靈活的 AIaaS 解決方案,採用按需付費模式,並可與其他雲端原生服務集成,因此在新創公司和大型企業中廣受歡迎。
預計混合雲領域將在2025年至2032年期間實現最快成長,這得益於企業對資料安全、合規性和本地控制的需求,同時利用基於雲端的AI功能。混合雲模式提供了一種平衡的方法,結合了私有雲和公有雲的優勢,尤其適用於醫療保健和金融等受監管的行業。
• 透過奉獻
根據產品類型,AIaaS 市場可細分為基礎設施即服務 (IaaS)、平台即服務 (PaaS) 和軟體即服務 (SaaS)。軟體即服務 (SaaS) 領域在 2025 年佔據了最大的市場收入份額,這得益於市場對即用型 AI 應用的需求,這些應用只需極少的技術專業知識,即可快速部署。 SaaS AI 解決方案涵蓋客戶關係管理、自動化分析和智慧自動化等領域,吸引了各行各業的廣泛用戶群。
隨著越來越多的組織尋求可自訂的 AI 開發環境來建置、訓練和部署模型,同時降低基礎設施管理開銷,平台即服務 (PaaS) 領域預計將在 2025 年至 2032 年間見證最快的複合年增長率。
• 按最終用戶
根據最終用戶,AIaaS 市場細分為商業、金融服務和保險 (BFSI)、IT 和電信、零售和電子商務、醫療保健和生命科學、政府和國防、製造業、能源和公用事業等。 BFSI 領域在 2025 年佔據了最大的市場收入份額,這得益於對 AI 驅動的詐欺偵測、風險管理、客戶個人化和法規遵循的迫切需求。金融機構利用 AIaaS 來提高營運效率並提供卓越的客戶服務。
預計零售和電子商務領域將在2025年至2032年期間實現最快的成長,這得益於人工智慧即服務(AIaaS)在個人化購物體驗、庫存管理、需求預測和聊天機器人方面的日益普及。線上購物的興起以及消費者對客製化推薦的偏好,推動了該領域的應用。
人工智慧即服務(AIaaS)市場區域分析
- 北美在 AIaaS 市場佔據主導地位,2024 年的收入份額最大,約為 38.7%,這得益於雲端技術的快速普及、主要 AIaaS 供應商的強大影響力以及對 AI 研發的大量投資
- 該地區的企業和政府組織優先考慮面向 BFSI、醫療保健和 IT 等各領域的數位轉型、數據分析和自動化的 AI 解決方案
- 先進的雲端基礎設施、熟練的技術勞動力和促進創新的強大監管框架進一步支持了這種廣泛採用,使北美成為大型企業和中小企業部署 AIaaS 的領先中心
美國人工智慧即服務 (AIaaS) 市場洞察
2025年,美國AIaaS市場佔據北美地區最大收入份額,約82%,這得益於雲端運算和人工智慧驅動的數位轉型計畫在各行各業的廣泛應用。企業越來越重視人工智慧驅動的自動化、數據分析和機器學習,以提升營運效率和客戶參與。企業越來越傾向於透過公有雲和混合雲平台交付可擴展的人工智慧解決方案,以及人工智慧與語音助理和企業軟體的集成,這進一步推動了市場的擴張。此外,主要AIaaS供應商的入駐以及對人工智慧創新的持續投入,大大促進了美國市場領先地位的鞏固。
歐洲人工智慧即服務 (AIaaS) 市場洞察
預計歐洲 AIaaS 市場將在整個預測期內以顯著的複合年增長率擴張,這得益於醫療保健、製造業和政府部門對 AI 的日益普及。 《一般資料保護規範》(GDPR)等嚴格的資料隱私法規正在鼓勵採用私有雲和混合雲部署模式,以確保 AI 服務的安全合規。智慧城市計畫、數位政府服務和 AI 驅動的自動化解決方案的興起正在推動市場成長。歐洲企業也關注 AI 的倫理和透明度,這加速了對值得信賴且可解釋的 AIaaS 產品的需求。
英國人工智慧即服務 (AIaaS) 市場洞察
英國 AIaaS 市場預計將在預測期內實現顯著的複合年增長率,這得益於對 AI 新創公司以及 BFSI、零售和醫療保健行業數位轉型項目的大力投資。對 AI 支援的客戶服務平台、詐欺檢測系統和個人化行銷解決方案的需求正在快速成長。此外,英國強大的雲端基礎設施和混合雲環境的採用支援可擴展且靈活的 AIaaS 部署,從而刺激市場成長。
德國人工智慧即服務 (AIaaS) 市場洞察
預計在預測期內,德國AIaaS市場將以可觀的複合年增長率擴張,這得益於該國對工業4.0以及製造業和物流業自動化的關注。人們對AI優勢的認識不斷提高,以及對資料安全的重視,正在推動私有雲和混合雲上AI服務的採用。在政府AI研究和永續技術應用措施的支持下,德國的創新生態系統正在推動AIaaS與物聯網和智慧工廠解決方案的整合,尤其是在汽車和工業領域。
亞太地區人工智慧即服務 (AIaaS) 市場洞察
受數位轉型的快速推進、雲端基礎設施投資的不斷增長以及中國、印度、日本和韓國等國家政府主導的人工智慧策略的推動,亞太地區的 AIaaS 市場預計將在 2025 年起以超過 26% 的複合年增長率保持高速增長。零售、電信和醫療保健領域對人工智慧應用的需求日益增長,也正在推動市場規模的擴大。該地區不斷壯大的技術人才庫,以及提供經濟高效解決方案的本地 AIaaS 供應商的湧現,將進一步推動市場成長。
日本人工智慧即服務 (AIaaS) 市場洞察
日本 AIaaS 市場正因先進技術的採用、人口老化以及對機器人和自動化的重視而蓬勃發展。 AIaaS 日益應用於提升客戶服務、醫療監測和生產效率。 AI 服務與物聯網設備和智慧城市專案的整合也刺激了市場需求。日本對 AI 倫理和精準技術的重視,也推動了滿足國內需求的複雜 AIaaS 應用的成長。
中國人工智慧即服務 (AIaaS) 市場洞察
2025年,中國AIaaS市場佔據亞太地區最大市場份額,這得益於中國龐大的數位經濟、不斷壯大的中產階級以及各行各業對AI的積極應用。政府推動AI創新、智慧城市發展和雲端運算基礎設施建設的措施是關鍵驅動因素。國內科技巨頭提供價格合理的AIaaS平台,加上快速的都市化和企業數位化轉型,確保了中國市場的強勁成長。
人工智慧即服務(AIaaS)市場份額
人工智慧即服務 (AIaaS) 產業主要由知名公司主導,包括:
- 亞馬遜網路服務(美國)
- Microsoft Azure(美國)
- Google 雲端平台(美國)
- IBM Cloud(美國)
- Oracle 雲端(美國)
- SAP(德國)
- 阿里雲(中國)
- 百度智能雲端(中國)
- 騰訊雲(中國)
- Salesforce(美國)
- H2O.ai(美國)
- DataRobot(美國)
- 印孚瑟斯公司(印度)
- Wipro(印度)
- NTT DATA(日本)
- 富士通(日本)
- 華為雲(中國)
- C3.ai(美國)
- TCS(印度)
- SAS(美國)
全球人工智慧即服務 (AIaaS) 市場的最新發展
-
2024年10月,新加坡電信推出了RE:AI,這是一項旨在提升企業和公共部門可擴展性、可訪問性和可負擔性的人工智慧雲端服務。這項人工智慧即服務 (AIaaS) 解決方案解決了人工智慧應用通常伴隨的高成本和複雜性問題。 RE:AI 利用新加坡電信專利的 5G MEC 編排平台,使客戶能夠無縫部署、管理和擴展人工智慧應用,從而促進各行各業的創新和效率。該計劃旨在實現人工智慧的大眾化,使企業和政府機構更容易獲得先進技術。
- 2024年9月,德勤有限公司推出了AI工廠即服務 (AI Factory as a Service),這是一套基於NVIDIA AI平台構建的可擴展生成式AI (GenAI) 功能套件。該解決方案整合了NVIDIA NIM Agent Blueprints、NVIDIA AI Enterprise軟體、加速運算和Oracle的企業AI技術,為客製化的GenAI工作流程建構了強大的生態系統。 AI工廠即服務簡化了AI的採用,提供預先配置的AI軟體和工作負載管理工具,以優化企業AI部署。
- 2024年9月,Salesforce 為其服務雲端 (Service Cloud) 引進了 AI 驅動的創新功能,旨在提升客戶和員工的案例解決率。這些增強功能確保全天候存取關鍵訊息,從而實現更快、更經濟高效的解決方案。最新功能包括為服務代表提供的逐步解決方案、客戶情緒追蹤工具以及 AI 驅動的建議,旨在提升整體客戶體驗。這些改進充分利用了 Einstein AI 和資料雲,強化了 Salesforce 對 AI 驅動卓越服務的承諾。
- 2023年4月,區塊鏈企業CHATCRYPTO推出了ChatCrypto代幣,這是一款通縮型人工智慧代幣,旨在促進區塊鏈即服務(BaaS)、人工智慧即服務(AIaaS)以及高效能運算(HPC)租賃基礎設施即服務(IaaS)的存取。該代幣採用通縮模型,旨在為平台及其用戶打造一個穩定永續的生態系統。此外,ChatCrypto AI Bot利用基於人工智慧的演算法進行精準的市場分析,提供先進的加密貨幣交易洞察。
- 2022年7月,IBM公司收購了領先的數據可觀測性軟體供應商Databand.ai, Ltd.。此次收購增強了IBM在自動化和人工智慧(AI)領域的研發實力和策略合作夥伴關係。透過將Databand.ai與IBM Observability by Instana APM和IBM Watson Studio集成,IBM增強了其監控、故障排除和優化數據管道的能力,確保為企業提供高品質、可靠的數據。此舉符合IBM擴展混合雲和AI能力的更廣泛策略。
SKU-
Get online access to the report on the World's First Market Intelligence Cloud
- Interactive Data Analysis Dashboard
- Company Analysis Dashboard for high growth potential opportunities
- Research Analyst Access for customization & queries
- Competitor Analysis with Interactive dashboard
- Latest News, Updates & Trend analysis
- Harness the Power of Benchmark Analysis for Comprehensive Competitor Tracking
研究方法
数据收集和基准年分析是使用具有大样本量的数据收集模块完成的。该阶段包括通过各种来源和策略获取市场信息或相关数据。它包括提前检查和规划从过去获得的所有数据。它同样包括检查不同信息源中出现的信息不一致。使用市场统计和连贯模型分析和估计市场数据。此外,市场份额分析和关键趋势分析是市场报告中的主要成功因素。要了解更多信息,请请求分析师致电或下拉您的询问。
DBMR 研究团队使用的关键研究方法是数据三角测量,其中包括数据挖掘、数据变量对市场影响的分析和主要(行业专家)验证。数据模型包括供应商定位网格、市场时间线分析、市场概览和指南、公司定位网格、专利分析、定价分析、公司市场份额分析、测量标准、全球与区域和供应商份额分析。要了解有关研究方法的更多信息,请向我们的行业专家咨询。
可定制
Data Bridge Market Research 是高级形成性研究领域的领导者。我们为向现有和新客户提供符合其目标的数据和分析而感到自豪。报告可定制,包括目标品牌的价格趋势分析、了解其他国家的市场(索取国家列表)、临床试验结果数据、文献综述、翻新市场和产品基础分析。目标竞争对手的市场分析可以从基于技术的分析到市场组合策略进行分析。我们可以按照您所需的格式和数据样式添加您需要的任意数量的竞争对手数据。我们的分析师团队还可以为您提供原始 Excel 文件数据透视表(事实手册)中的数据,或者可以帮助您根据报告中的数据集创建演示文稿。

