全球基於人工智慧的醫療帳單詐欺檢測市場規模、份額和趨勢分析報告—產業概況和 2032 年預測

请求目录 请求目录 与分析师交谈 与分析师交谈 免费样本报告 免费样本报告 购买前请咨询 提前咨询 立即购买 立即购买

全球基於人工智慧的醫療帳單詐欺檢測市場規模、份額和趨勢分析報告—產業概況和 2032 年預測

  • Medical Devices
  • Upcoming Report
  • May 2025
  • Global
  • 350 页面
  • 桌子數: 220
  • 图号: 60

通过敏捷供应链咨询解决关税挑战

供应链生态系统分析现已成为 DBMR 报告的一部分

Global Ai Based Medical Billing Fraud Detection Market

市场规模(十亿美元)

CAGR :  % Diagram

Chart Image USD 1.19 Billion USD 5.53 Billion 2024 2032
Diagram Forecast Period
2025 –2032
Diagram Market Size (Base Year)
USD 1.19 Billion
Diagram Market Size (Forecast Year)
USD 5.53 Billion
Diagram CAGR
%
Diagram Major Markets Players
  • Optum
  • Inc. (U.S.)
  • Cognizant (U.S.)
  • Oracle (U.S.)
  • Deloitte (U.S.)

全球基於人工智慧的醫療帳單詐欺檢測市場細分,按組件(軟體和服務)、部署模式(本地和基於雲端)、分析類型(描述性分析、預測性分析和規範性分析)、應用(保險索賠審查、支付完整性和身份管理)、最終用戶(私人保險付款人、公共/政府機構和第三方服務提供者)- 行業趨勢和預測到 2032 年

基於人工智慧的醫療帳單詐欺偵測市場 Z

 基於人工智慧的醫療帳單詐欺偵測市場規模

  • 2024 年全球基於人工智慧的醫療帳單詐欺偵測市場規模為11.9 億美元,預計到 2032 年將達到 55.3 億美元,預測期內 複合年增長率為 21.20%。
  • 這種成長受到醫療詐欺發生率上升、醫療支出增加以及越來越多地採用人工智慧和分析技術來提高計費準確性和減少財務損失等因素的推動

基於人工智慧的醫療帳單詐欺偵測市場分析

  • 基於人工智慧的醫療帳單詐欺偵測系統利用機器學習和數據分析來識別異常並防止醫療帳單中的欺詐性索賠,確保合規性和財務完整性
  • 醫療詐欺案件的增加、醫療成本的上升以及醫療帳單流程自動化和準確性的日益增長的需求極大地推動了市場的成長
  • 由於先進的醫療 IT 基礎設施、人工智慧技術的高度採用以及主要市場參與者的強大影響力,北美預計將以 45.5% 的市場份額佔據基於人工智慧的醫療帳單詐欺檢測市場的主導地位
  • 由於醫療保健基礎設施的快速擴張、數位化程度的提高以及詐欺意識的增強,預計在預測期內,亞太地區將成為基於人工智慧的醫療帳單詐欺檢測市場增長最快的地區,市場份額將達到 16.5%。
  • 軟體領域預計將佔據市場主導地位,市佔率達到 60.5%,因為它能夠自動化複雜的計費流程、提高偵測準確性並減少人工錯誤

報告範圍和基於人工智慧的醫療帳單詐欺檢測市場細分  

屬性

基於人工智慧的醫療帳單詐欺檢測關鍵市場洞察

涵蓋的領域

  • 按組件:軟體和服務
  • 依部署模式: 本地和基於雲端
  • 依分析類型:描述性分析、預測性分析與規範分析
  • 按應用: 保險索賠審查、支付完整性和身份管理
  • 按最終用戶: 私人保險付款人、公共/政府機構和第三方服務提供者

覆蓋國家

北美洲

  • 我們
  • 加拿大
  • 墨西哥

歐洲

  • 德國
  • 法國
  • 英國
  • 荷蘭
  • 瑞士
  • 比利時
  • 俄羅斯
  • 義大利
  • 西班牙
  • 火雞
  • 歐洲其他地區

亞太

  • 中國
  • 日本
  • 印度
  • 韓國
  • 新加坡
  • 馬來西亞
  • 澳洲
  • 泰國
  • 印尼
  • 菲律賓
  • 亞太其他地區

中東和非洲

  • 沙烏地阿拉伯
  • 阿聯酋
  • 南非
  • 埃及
  • 以色列
  • 中東和非洲其他地區

南美洲

  • 巴西
  • 阿根廷
  • 南美洲其他地區

主要市場參與者

  • Optum, Inc.(美國)
  • Cognizant(美國)
  • 甲骨文(美國)
  • 德勤(美國)
  • MedAI 解決方案(美國)
  • IBM(美國)
  • SAS Institute Inc.(美國)
  • 麥克森公司(美國)
  • HCL Technologies Limited(印度)
  • 印孚瑟斯公司(印度)
  • Wipro(印度)
  • 塔塔諮詢服務有限公司(印度)
  • 埃森哲(愛爾蘭)
  • 凱捷(法國)
  • NTT數據集團公司(日本)
  • DXC科技公司(美國)
  • Epic Systems Corporation(美國)
  • Veradigm LLC(美國)

市場機會

  • 利用人工智慧增強詐欺檢測和自動化
  • 醫療保健支付者越來越多地採用人工智慧自動化

加值資料資訊集

除了對市場價值、成長率、細分、地理覆蓋範圍和主要參與者等市場情景的洞察之外,Data Bridge Market Research 策劃的市場報告還包括進出口分析、生產能力概覽、生產消費分析、價格趨勢分析、氣候變遷情景、供應鏈分析、價值鏈分析、原材料/消耗品概覽、供應商選擇標準、PESTLE 分析、波特分析和監管框架。

基於人工智慧的醫療帳單詐欺偵測市場趨勢

“人工智慧演算法和預測分析在預防詐欺方面的進步”

  • 基於人工智慧的醫療帳單詐欺偵測發展的一個突出趨勢是先進機器學習演算法和預測分析的日益融合
  • 這些創新使系統能夠自動分析大量帳單資料、識別模式並預測詐欺活動,從而增強詐欺偵測能力 
    • 例如,人工智慧模型現在能夠即時標記不一致、超額收費或可疑模式,幫助保險公司和醫療保健提供者減少財務損失。這對於檢測複雜的詐欺計劃特別有用,例如虛假帳單和拆分 
  • 這些進步正在改變詐欺偵測流程,提高財務準確性,並推動對具有尖端人工智慧功能的下一代詐欺偵測解決方案的需求

基於人工智慧的醫療帳單詐欺偵測市場動態

司機

“醫療保健詐欺和賬單錯誤發生率上升”

  • 醫療保健詐欺、帳單錯誤和詐欺性索賠的發生率不斷上升,極大地推動了對基於人工智慧的醫療帳單詐欺偵測系統的需求
  • 隨著醫療保健系統日益數位化,虛假帳單、升級編碼和分割等詐欺活動也變得越來越複雜,導致更高的財務損失
  • 對人工智慧驅動的解決方案的需求正在上升,因為這些系統可以有效地分析大量的計費數據,以檢測異常並即時防止欺詐,確保合規性並減少人工幹預

例如,

  • 根據美國國家醫療保健反詐欺協會(NHCAA)的報告,光是美國醫療保健詐欺每年就造成約 680 億美元的損失。對高效詐欺預防和風險緩解解決方案的需求日益增長,推動了基於人工智慧的詐欺檢測技術市場的發展 
  • 因此,詐欺和計費錯誤發生率的上升推動了基於人工智慧的解決方案的採用,從而提高了醫療帳單中檢測欺詐性索賠的準確性和效率

機會

“利用人工智慧增強詐欺檢測和自動化”

  • 人工智慧詐欺偵測系統可以顯著提高帳單審計的準確性,自動偵測詐欺活動,並提高整體營運效率,使醫療保健提供者和保險公司能夠做出更明智的決策
  • 人工智慧演算法可以即時分析大量帳單數據,標記可疑索賠並識別欺詐行為模式,例如重複索賠、分割或虛假帳單
  • 此外,人工智慧系統可以輔助進行預測分析,幫助組織在詐欺風險發生之前主動識別潛在詐欺風險,減少財務損失並提高合規性

例如,

  • 根據《醫療保險新聞》報道,2025 年,人工智慧演算法將用於自動化詐欺偵測流程,透過識別多收費和升級編碼等詐欺行為,每年為保險公司節省數百萬美元。人工智慧能夠快速分析大型資料集,從而更有效地預防欺詐,縮短回應時間並確保及時幹預 
  • 人工智慧與醫療帳單詐欺檢測系統的整合可以降低管理成本、加快索賠處理速度、提高識別欺詐性索賠的準確性,最終提高醫療保健組織的財務誠信

克制/挑戰

“實施和維護成本高昂”

  • 實施和維護基於人工智慧的詐欺檢測系統的高成本是一個重大挑戰,特別是對於預算有限的小型醫療保健組織或保險公司而言
  • 這些人工智慧解決方案需要在軟體、硬體基礎設施和持續維護方面進行大量投資,投資金額可能從數千美元到數百萬美元不等,具體取決於實施規模
  • 這種財務障礙可能會阻礙小型醫療保健提供者和保險公司採用人工智慧解決方案,導致他們依賴傳統的詐欺檢測方法,而這種方法效率較低且更容易出錯

例如,

  • 2024 年 12 月,根據 Forrester Research 的一份報告,部署基於人工智慧的詐欺偵測系統的前期成本對於較小的組織來說可能是一個重大障礙。這些成本不僅包括購買軟體和硬件,還包括培訓人員有效使用這些複雜系統 
  • 因此,高昂的初始投資和維護成本可能會限制人工智慧解決方案的廣泛採用,特別是在財務靈活性較低的地區,從而阻礙基於人工智慧的醫療帳單詐欺檢測市場的整體成長

基於人工智慧的醫療帳單詐欺偵測市場範圍

市場根據組件、部署模式、分析類型、應用程式和最終用戶進行細分

分割

細分

按組件

  • 軟體
  • 服務

按部署模式

      • 本地
      • 基於雲端

按分析類型

  • 描述性分析
  • 預測分析
  • 規範分析

按應用

  • 保險理賠審查
  • 支付誠信
  • 身分管理

按最終用戶

  • 私人保險支付者
  • 公共/政府機構
  • 第三方服務提供者

預計到 2025 年,軟體將佔據市場主導地位,在組件領域佔有最大份額

由於軟體能夠自動化複雜的計費流程、提高檢測準確性並減少人工錯誤,預計到 2025 年,該軟體領域將在基於人工智慧的醫療帳單詐欺檢測市場中佔據主導地位,佔據 60.5% 的最大份額。人工智慧軟體可以即時分析大型數據集,幫助醫療保健提供者和保險公司更有效地識別欺詐性索賠。此外,機器學習和預測分析的整合進一步增強了詐欺預防能力

預計在預測期內,描述性分析將在分析市場類型中佔據最大份額

到 2025 年,描述性分析領域預計將佔據市場主導地位,佔據 41.8% 的最大市場份額,這得益於其在詐欺偵測中的基礎性作用。它使組織能夠分析歷史計費數據,以發現與詐欺活動相關的模式、趨勢和異常。這種洞察力對於建立預測模型和為策略決策提供資訊至關重要,使其在醫療保健和保險領域中廣泛採用

基於人工智慧的醫療帳單詐欺偵測市場區域分析

“北美在基於人工智慧的醫療帳單詐欺檢測市場中佔有最大份額”

  • 北美在基於人工智慧的醫療帳單詐欺檢測市場中佔據主導地位,市場份額估計為 45.5%,這得益於先進的醫療 IT 基礎設施、人工智慧技術的高度採用以及主要市場參與者的強大影響力
  • 美國佔 42.7% 的市場份額,這是由於醫療保健詐欺案件不斷增加、醫療保健支出高昂以及政府支持在醫療保健系統中採用人工智慧,對詐欺預防的需求日益增加
  • 完善的監管框架(例如 HIPAA)的出現以及醫療技術投資的不斷增加進一步增強了市場,從而導致對基於人工智慧的詐欺檢測解決方案的需求增加
  • 此外,數位健康記錄和索賠自動化的日益普及,以及對詐欺風險的認識的提高,正在推動整個地區的市場成長

“預計亞太地區將在基於人工智慧的醫療帳單詐欺檢測市場中實現最高的複合年增長率”

  • 預計亞太地區將見證基於人工智慧的醫療帳單詐欺檢測市場的最高增長率,市場份額將達到 16.5%,這得益於醫療基礎設施的快速擴張、數位化程度的提高以及詐欺意識的增強
  • 中國、印度和日本等國家正成為主要市場,這得益於其龐大的人口、不斷擴張的醫療保健產業以及日益增多的醫療保健詐欺行為
  • 日本擁有先進的醫療 IT 基礎設施並專注於尖端技術,仍然是基於人工智慧的詐欺檢測解決方案的重要市場。中國在醫療保健領域採用人工智慧和自動化方面持續保持領先地位
  • 預計印度將實現最高的複合年增長率,這得益於醫療保健行業的快速增長、醫療保健欺詐案件的增加以及旨在提高計費準確性和預防欺詐的數位醫療計劃的不斷擴大

基於人工智慧的醫療帳單詐欺偵測市場份額

市場競爭格局提供了競爭對手的詳細資訊。詳細資訊包括公司概況、公司財務狀況、收入、市場潛力、研發投資、新市場計劃、全球影響力、生產基地和設施、生產能力、公司優勢和劣勢、產品發布、產品寬度和廣度、應用優勢。以上提供的數據點僅與公司對市場的關注有關。

市場中主要的市場領導者有:

  • Optum, Inc.(美國)
  • Cognizant(美國)
  • 甲骨文(美國)
  • 德勤(美國)
  • MedAI 解決方案(美國)
  • IBM(美國)
  • SAS Institute Inc.(美國)
  • 麥克森公司(美國)
  • HCL Technologies Limited(印度)
  • 印孚瑟斯公司(印度)
  • Wipro(印度)
  • 塔塔諮詢服務有限公司(印度)
  • 埃森哲(愛爾蘭)
  • 凱捷(法國)
  • NTT數據集團公司(日本)
  • DXC科技公司(美國)
  • Epic Systems Corporation(美國)
  • Veradigm LLC(美國)

全球基於人工智慧的醫療帳單詐欺檢測市場的最新發展

  • 2025 年 5 月,Optum 推出了 Optum Integrity One,這是一個由人工智慧驅動的綜合收入週期平台,旨在提高臨床文件和編碼的準確性。該平台實現了從護理點到最終編碼的全過程自動化,簡化了計費流程,並減輕了醫療服務提供者的管理負擔
  • 2025 年 4 月,Oracle 推出了先進的人工智慧工具,以加強醫療索賠中的詐欺偵測。這些工具利用機器學習和自然語言處理來分析大量醫療保健數據,識別出指示詐欺活動的模式,例如昇級編碼和虛假帳單。透過自動化檢測流程,Oracle 旨在減少虛假索賠並提高報銷的準確性
  • 2025 年 4 月,MedAI Solution 重點介紹了 AI 在即時醫療帳單詐欺檢測中的應用。透過在醫療保健收入周期管理系統中採用自然語言處理、機器學習和自動化,人工智慧可以在處理索賠之前主動識別並防止欺詐性計費活動,從而保障醫療保健財務
  • 2025 年 4 月,德勤發布了關於人工智慧多模式技術在保險索賠生命週期內偵測詐欺行為的應用的見解。這些技術分析各種數據來源以識別異常和潛在欺詐,幫助保險公司減少財務損失並提高營運效率
  • 2024 年 4 月,Cognizant 與 FICO 合作推出基於雲端的即時支付詐欺預防解決方案。這個人工智慧系統旨在幫助銀行和支付提供者即時檢測和防止詐欺交易,增強數位支付領域的安全性 


SKU-

Get online access to the report on the World's First Market Intelligence Cloud

  • Interactive Data Analysis Dashboard
  • Company Analysis Dashboard for high growth potential opportunities
  • Research Analyst Access for customization & queries
  • Competitor Analysis with Interactive dashboard
  • Latest News, Updates & Trend analysis
  • Harness the Power of Benchmark Analysis for Comprehensive Competitor Tracking
Request for Demo

研究方法

数据收集和基准年分析是使用具有大样本量的数据收集模块完成的。该阶段包括通过各种来源和策略获取市场信息或相关数据。它包括提前检查和规划从过去获得的所有数据。它同样包括检查不同信息源中出现的信息不一致。使用市场统计和连贯模型分析和估计市场数据。此外,市场份额分析和关键趋势分析是市场报告中的主要成功因素。要了解更多信息,请请求分析师致电或下拉您的询问。

DBMR 研究团队使用的关键研究方法是数据三角测量,其中包括数据挖掘、数据变量对市场影响的分析和主要(行业专家)验证。数据模型包括供应商定位网格、市场时间线分析、市场概览和指南、公司定位网格、专利分析、定价分析、公司市场份额分析、测量标准、全球与区域和供应商份额分析。要了解有关研究方法的更多信息,请向我们的行业专家咨询。

可定制

Data Bridge Market Research 是高级形成性研究领域的领导者。我们为向现有和新客户提供符合其目标的数据和分析而感到自豪。报告可定制,包括目标品牌的价格趋势分析、了解其他国家的市场(索取国家列表)、临床试验结果数据、文献综述、翻新市场和产品基础分析。目标竞争对手的市场分析可以从基于技术的分析到市场组合策略进行分析。我们可以按照您所需的格式和数据样式添加您需要的任意数量的竞争对手数据。我们的分析师团队还可以为您提供原始 Excel 文件数据透视表(事实手册)中的数据,或者可以帮助您根据报告中的数据集创建演示文稿。

Frequently Asked Questions

市场是基于 全球基於人工智慧的醫療帳單詐欺檢測市場細分,按組件(軟體和服務)、部署模式(本地和基於雲端)、分析類型(描述性分析、預測性分析和規範性分析)、應用(保險索賠審查、支付完整性和身份管理)、最終用戶(私人保險付款人、公共/政府機構和第三方服務提供者)- 行業趨勢和預測到 2032 年 进行细分的。
在2024年,全球基於人工智慧的醫療帳單詐欺檢測市場的规模估计为1.19 USD Billion美元。
全球基於人工智慧的醫療帳單詐欺檢測市場预计将在2025年至2032年的预测期内以CAGR 21.2%的速度增长。
市场上的主要参与者包括Optum, Inc. (U.S.), Cognizant (U.S.), Oracle (U.S.), Deloitte (U.S.) , MedAI Solution (U.S.)。
Testimonial