Global Ai Driven Pathology Tools Market
市场规模(十亿美元)
CAGR :
%
USD
156.82 Million
USD
529.70 Million
2024
2032
| 2025 –2032 | |
| USD 156.82 Million | |
| USD 529.70 Million | |
|
|
|
|
全球全球語言處理 (NLP))、部署模式(本地、基於雲端)、應用(診斷病理學、研究與藥物開發、法醫病理學、個人化醫療)、最終用戶(醫院與診所、研究實驗室、診斷實驗室、法醫機構)– 產業趨勢與預測 2032 年)
人工智慧驅動的病理學工具市場分析
在機器學習、深度學習和影像辨識技術進步的推動下,全球人工智慧病理學工具市場正在經歷快速成長。人工智慧工具正在透過更準確、更快速的診斷來改變病理學,特別是在癌症檢測領域,一些研究表明人工智慧的診斷準確率超過 90%。例如,在乳癌方面,基於人工智慧的病理工具在識別惡性腫瘤方面已顯示出96%的準確率。癌症發生率不斷上升,根據世界衛生組織 (WHO) 的數據,2020 年全球預計將新增 1,930 萬例癌症病例,這大大增加了對這些工具的需求。此外,人工智慧在病理學中的應用正在研究和藥物開發中不斷擴展,人工智慧工具促進了更快的藥物發現過程,基因組研究中的人工智慧驅動分析證明了這一點。隨著在臨床和研究環境中的應用日益廣泛,人工智慧工具正成為改善患者預後和病理學操作效率不可或缺的一部分。
人工智慧驅動的病理學工具市場規模
2024 年全球人工智慧驅動的病理工具市場規模為 1.5682 億美元,預計到 2032 年將達到 5.297 億美元,在 2025 年至 2032 年的預測期內複合年增長率為 16.40%。除了對市場價值、成長率、細分、地理覆蓋範圍和主要參與者等市場情景的洞察外,Data Bridge Market Research 策劃的市場報告還包括深度專家分析、患者流行病學、管道分析、定價分析和監管框架。
人工智慧驅動的病理學工具市場趨勢
“專注於癌症診斷”
在腫瘤學領域,對AI病理學工具的需求越來越集中在增強癌症診斷。人工智慧正在整合到癌症檢測工作流程中,為早期診斷和腫瘤分級帶來顯著的改善。這些工具利用深度學習演算法來分析病理切片和成像數據,識別人類病理學家可能難以檢測的模式。透過準確分級腫瘤並評估其特徵,人工智慧工具有助於確定最適合患者的治療方案。全球癌症發生率的不斷上升以及人工智慧的進步使得這些工具在腫瘤學中變得至關重要,因為它們可以提供更快、更準確的診斷,這對於改善患者的治療效果和存活率至關重要。
報告範圍和人工智慧驅動的病理學工具市場細分
|
屬性 |
人工智慧驅動的病理學工具關鍵市場洞察 |
|
涵蓋的領域 |
|
|
覆蓋國家 |
美國、加拿大、墨西哥、德國、法國、英國、荷蘭、瑞士、比利時、俄羅斯、義大利、西班牙、土耳其、歐洲其他地區、中國、日本、印度、韓國、新加坡、馬來西亞、澳洲、泰國、印尼、菲律賓、亞太其他地區、沙烏地阿拉伯、阿聯酋、南非、埃及、以色列、中東和非洲其他地區、巴西、阿根廷、南美洲其他地區 |
|
主要市場參與者 |
PathAI, Inc.(美國)、Ibex Medical Analytics Ltd.(以色列)、Tempus Labs, Inc.(美國)、Proscia Inc.(美國)、DeepLens, Inc.(美國)、Paige.AI, Inc.(美國)、Vuno Inc.(韓國)、富士軟片式會社(日本)、荷蘭人社(日本)、荷蘭人)、美國(日本)(日本)、美國(日本)公司(日本). Inc.(加拿大)、DXC Technology Company(美國)、Qure.ai Technologies Pvt. Ltd.(印度)、Mindpeak GmbH(德國)、MetaSystems GmbH(德國)、Medical Informatics Corp.(美國)、Huron Digital Pathology Inc.(加拿大)等。 |
|
市場機會 |
|
|
加值資料資訊集 |
除了對市場價值、成長率、細分、地理覆蓋範圍和主要參與者等市場情景的洞察之外,Data Bridge Market Research 策劃的市場報告還包括深度專家分析、患者流行病學、管道分析、定價分析和監管框架。 |
人工智慧驅動的病理學工具 市場定義
人工智慧驅動的病理工具是指利用人工智慧(AI) 和機器學習演算法透過分析病理切片和醫學影像來幫助病理學家診斷疾病(尤其是癌症)的先進技術。這些工具可以自動執行影像辨識、腫瘤檢測、分類和分級等任務,與傳統方法相比,可以提供更準確、更有效率的結果。人工智慧驅動的病理學工具有助於提高診斷的速度、準確性和一致性,使病理學家能夠識別可能難以手動檢測的模式。這些工具被整合到臨床和研究環境中,以改善患者的治療效果並支持個人化醫療。
人工智慧驅動的病理學工具市場動態
驅動程式
- 慢性病和癌症發生率上升
慢性病(尤其是癌症)盛行率的上升極大地推動了對人工智慧病理學工具的需求。隨著全球癌症病例的增加,人工智慧工具越來越多地被整合到病理學工作流程中,以協助早期診斷、更準確的腫瘤分級以及個人化治療計劃的發展。這些工具可以分析複雜的醫學影像,檢測出人眼可能忽略的最小異常,從而有助於在治療最有效時進行早期發現。人工智慧工具在腫瘤分級方面也發揮關鍵作用,可以更精確地評估癌症分期,直接影響治療決策。隨著慢性病尤其是癌症的發生率不斷上升,人工智慧工具在提高診斷效率和準確性方面變得不可或缺。
慢性病負擔日益加重,加上人工智慧的進步,正在重塑病理學領域,增強早期診斷和個人化護理,以獲得更好的患者治療效果。
- 人工智慧和機器學習的進步
人工智慧 (AI) 和機器學習 (ML) 的進步正在徹底改變病理學領域,從而開發出能夠分析大型資料集和提高診斷準確性的更複雜的工具。隨著人工智慧和機器學習技術的發展,病理學工具現在可以更精確地處理大量醫學影像,甚至可以識別出人類病理學家可能忽略的最細微的異常。這些進步使人工智慧驅動的工具能夠顯著改善腫瘤檢測、分級和預後等領域,為臨床醫生提供更詳細、更準確的見解。此外,人工智慧演算法可以自動執行影像分類等常規任務,減少病理學家的工作量,使他們能夠專注於更複雜的病例。隨著這些技術的不斷進步,人工智慧驅動的病理學工具與臨床工作流程的整合預計將會增加,從而提高診斷的速度和品質。人工智慧和機器學習的進步增強了病理學工具的能力,使其成為更有效率、更準確的疾病診斷所必需的。
機會
- 與基因組學和個人化醫療的整合
人工智慧驅動的病理學工具與基因組學和個人化醫療的結合為醫療保健的發展提供了重要機會。透過將人工智慧與基因數據和生物標記分析相結合,這些工具可以幫助為個別患者制定更有針對性、更精確的治療方案。這在腫瘤學中尤其重要,因為基因突變和分子分析在確定最有效的治療方法方面起著關鍵作用。人工智慧可以分析大量的遺傳資訊和病理數據,識別臨床醫生可能難以手動檢測的模式和相關性。因此,這種整合能夠開發更有針對性的治療方法,改善治療效果並最大限度地減少副作用。此外,它有助於促進向精準醫療的轉變,根據患者獨特的基因和臨床特徵提供個人化護理。
人工智慧驅動的病理學工具和基因組學之間的協同作用有可能顯著增強個人化醫療,特別是在癌症等複雜疾病的治療方面。
- 與製藥和生物技術公司的合作
人工智慧驅動的病理學工具與製藥或生物技術公司之間的合作為加強藥物開發流程提供了寶貴的機會。透過利用人工智慧工具,這些公司可以加速發現新的藥物標靶並改善臨床試驗結果。人工智慧可以簡化病理圖像和組織樣本的分析,幫助識別可能被忽視的關鍵生物標記和疾病模式。這種能力在早期藥物開發中尤其重要,人工智慧可以幫助選擇正確的患者群體並預測對治療的反應。在臨床試驗中,人工智慧驅動的病理學工具還可以提高數據準確性,從而更快、更可靠地評估藥物療效和安全性。此外,這些工具可以支持生物標記的發現,這對於開發個人化治療至關重要。
例如,
- 2024年11月,根據Deep Bio Inc.發表的文章稱,Deep Bio Inc.已與PathAI合作,將其DeepDx前列腺癌分析解決方案與PathAI的AISight1影像管理系統相結合。此次合作將 Deep Bio 的 AI 技術與 PathAI 的平台結合,增強了對前列腺癌先進診斷工具的取得。它為兩家公司提供了進一步與製藥和生物技術公司合作的機會,透過改進的診斷能力來協助藥物開發和臨床試驗
與製藥和生物技術公司合作,使人工智慧驅動的病理學工具在推進藥物研究、臨床試驗和個人化醫療方面發揮關鍵作用,並提高整體藥物開發效率。
限制/挑戰
- 實施成本高
高昂的實施成本是人工智慧病理工具市場發展的一大限制因素。開發、整合和維護人工智慧系統需要在技術、基礎設施和技術人員方面進行大量投資。醫療保健機構,尤其是新興市場或資源有限地區的機構,可能難以負擔人工智慧整合所需的昂貴工具和軟體。前期成本還包括培訓病理學家和醫療保健專業人員有效使用這些先進系統。此外,定期更新、系統維護以及需要專業人員操作人工智慧工具也會進一步增加持續的開支。這種經濟負擔可能會減緩人工智慧病理學工具的採用,尤其是在預算緊張的醫院和診所。
人工智慧實施和培訓的高成本對市場成長構成了障礙,尤其是在資源受限的環境中,限制了這些技術在病理學中的廣泛使用。
- 資料隱私和安全問題
資料隱私和安全問題對人工智慧驅動的病理學工具市場構成了重大挑戰。這些工具依賴敏感患者資料(例如醫學影像和基因資訊)的收集、分析和存儲,這增加了潛在洩漏和未經授權存取的風險。隨著人工智慧在醫療保健領域的應用日益廣泛,保護這些數據免受網路威脅變得至關重要。醫療保健機構必須遵守嚴格的法規,例如歐洲的 GDPR 和美國的 HIPAA,以確保病患資料得到安全處理。然而,實施這些合規措施的複雜性和成本可能是一個障礙。此外,人工智慧系統與現有醫療保健基礎設施的整合引發了人們對安全傳輸和儲存患者資料的更多擔憂。安全漏洞可能導致法律問題、失去病人信任,最終阻礙人工智慧病理學工具的採用。解決這些資料安全挑戰對於確保病理學中人工智慧的成功發展和應用至關重要。
人工智慧驅動的病理學工具市場範圍
市場根據產品類型、技術、部署模式、應用程式和最終用戶進行細分。這些細分市場之間的成長將幫助您分析行業中成長微弱的細分市場,並為用戶提供有價值的市場概覽和市場洞察,幫助他們做出策略決策,確定核心市場應用。
產品類型
- 軟體
- 服務
科技
- 機器學習
- 深度學習
- 自然語言處理(NLP)
部署模式
- 本地部署
- 基於雲端
應用
- 診斷病理學
- 研究與藥物開發
- 法醫病理學
- 個人化醫療
最終用戶
- 醫院和診所
- 研究實驗室
- 診斷實驗室
- 法醫機構
人工智慧驅動的病理學工具市場區域分析
對市場進行分析,並按國家、產品類型、技術、部署模式、應用和最終用戶提供市場規模洞察和趨勢,如上所述。
市場涵蓋的國家有美國、加拿大、墨西哥、德國、法國、英國、荷蘭、瑞士、比利時、俄羅斯、義大利、西班牙、土耳其、歐洲其他地區、中國、日本、印度、韓國、新加坡、馬來西亞、澳洲、泰國、印尼、菲律賓、亞太其他地區、沙烏地阿拉伯、阿聯酋、南非、埃及、以色列、中東和非洲其他地區、巴西、阿根廷以及其他地區南美洲。
北美預計將佔據市場主導地位,因為它擁有先進的醫療保健基礎設施、人工智慧技術的高採用率以及該地區主要參與者的強大影響力。
由於醫療保健投資不斷增加、慢性病患病率不斷上升以及中國和印度等國家越來越多地採用先進技術,預計亞太地區將成為成長最快的地區。
報告的國家部分還提供了影響個別市場因素以及影響市場當前和未來趨勢的國內市場監管變化。下游和上游價值鏈分析、技術趨勢和波特五力分析、案例研究等數據點是用於預測各國市場情景的一些指標。此外,在對國家數據進行預測分析時,還考慮了全球品牌的存在和可用性及其因來自本地和國內品牌的大量或稀缺的競爭而面臨的挑戰、國內關稅和貿易路線的影響。
人工智慧驅動的病理學工具市場份額
市場競爭格局提供了競爭對手的詳細資訊。詳細資訊包括公司概況、公司財務狀況、收入、市場潛力、研發投資、新市場計劃、全球影響力、生產基地和設施、生產能力、公司優勢和劣勢、產品發布、產品寬度和廣度、應用優勢。以上提供的數據點僅與公司對市場的關注有關。
人工智慧驅動的病理學工具市場領導者包括:
- PathAI, Inc.(美國)
- Ibex Medical Analytics Ltd.(以色列)
- Tempus Labs, Inc.(美國)
- Proscia Inc.(美國)
- DeepLens, Inc.(美國)
- Paige.AI, Inc.(美國)
- Vuno Inc.(韓國)
- 富士軟片株式會社(日本)
- 荷蘭皇家飛利浦公司
- IBM公司(美國)
- Zebra Medical Vision, Inc.(以色列)
- Pathcore Inc.(加拿大)
- DXC科技公司(美國)
- Qure.ai Technologies Pvt.有限公司(印度)
- Mindpeak GmbH(德國)
- MetaSystems GmbH(德國)
- 醫學資訊學公司(美國)
- Huron Digital Pathology Inc.(加拿大)
全球人工智慧病理學工具市場的最新發展
- 2024 年 11 月,PathAI 將 Deep Bio、DoMore Diagnostics、Paige 和 Visiopharm 等頂級公司的 AI 產品整合到其 AISight1 影像管理系統 (IMS) 中。此次合作增強了 AISight 的多功能性、可靠性和互通性,使 PathAI 能夠提供更全面、更無縫的解決方案,從而鞏固其在市場上的地位
- 2024 年 11 月,Deep Bio 與 PathAI 合作,將其用於前列腺癌分析的 DeepDx Prostate 解決方案與 PathAI 的 AISight1 影像管理系統 (IMS) 相結合。此次合作將 Deep Bio 的人工智慧技術與 PathAI 的平台相結合,增強了前列腺癌先進診斷工具的可及性,並鞏固了兩家公司在數位病理學市場的地位
- 2024 年 11 月,Aiforia 和 Paige 建立非獨家合作夥伴關係,將 Paige 的診斷 AI 應用程式整合到 Aiforia 平台中,從而增強功能和效能。此次合作將提高實驗室效率、診斷準確性和患者護理,幫助兩家公司為客戶提供先進的人工智慧解決方案。此次合作增強了他們的市場影響力,並提供了更全面的診斷工具
- 2024 年 11 月,荷蘭皇家飛利浦擴大了與亞馬遜網路服務 (AWS) 的策略合作,在雲端提供其綜合診斷產品組合,包括放射學、數位病理學、心臟病學和人工智慧解決方案。此次合作將簡化診斷工作流程,增強獲取關鍵見解的管道,改善臨床結果,進一步鞏固飛利浦在醫療技術市場的地位
- 2024年6月,Quest Diagnostics完成對PathAI Diagnostics的收購,以加速人工智慧和數位病理學在癌症和疾病診斷中的應用。此次收購將增強Quest的診斷能力,透過先進的AI技術實現更準確、更有效率的疾病檢測
- 2024 年 2 月,F. Hoffmann-La Roche Ltd 與 PathAI 達成獨家協議,透過羅氏組織診斷 (RTD) 開發用於伴隨診斷的人工智慧數位病理演算法。雖然 RTD 將僅與 PathAI 合作開發這些演算法,但它保留了開發自己的內部演算法的能力。此次合作將增強羅氏的診斷能力,並透過先進的人工智慧解決方案加速個人化治療的開發
SKU-
Get online access to the report on the World's First Market Intelligence Cloud
- Interactive Data Analysis Dashboard
- Company Analysis Dashboard for high growth potential opportunities
- Research Analyst Access for customization & queries
- Competitor Analysis with Interactive dashboard
- Latest News, Updates & Trend analysis
- Harness the Power of Benchmark Analysis for Comprehensive Competitor Tracking
研究方法
数据收集和基准年分析是使用具有大样本量的数据收集模块完成的。该阶段包括通过各种来源和策略获取市场信息或相关数据。它包括提前检查和规划从过去获得的所有数据。它同样包括检查不同信息源中出现的信息不一致。使用市场统计和连贯模型分析和估计市场数据。此外,市场份额分析和关键趋势分析是市场报告中的主要成功因素。要了解更多信息,请请求分析师致电或下拉您的询问。
DBMR 研究团队使用的关键研究方法是数据三角测量,其中包括数据挖掘、数据变量对市场影响的分析和主要(行业专家)验证。数据模型包括供应商定位网格、市场时间线分析、市场概览和指南、公司定位网格、专利分析、定价分析、公司市场份额分析、测量标准、全球与区域和供应商份额分析。要了解有关研究方法的更多信息,请向我们的行业专家咨询。
可定制
Data Bridge Market Research 是高级形成性研究领域的领导者。我们为向现有和新客户提供符合其目标的数据和分析而感到自豪。报告可定制,包括目标品牌的价格趋势分析、了解其他国家的市场(索取国家列表)、临床试验结果数据、文献综述、翻新市场和产品基础分析。目标竞争对手的市场分析可以从基于技术的分析到市场组合策略进行分析。我们可以按照您所需的格式和数据样式添加您需要的任意数量的竞争对手数据。我们的分析师团队还可以为您提供原始 Excel 文件数据透视表(事实手册)中的数据,或者可以帮助您根据报告中的数据集创建演示文稿。

