Global Ai Enabled Life Sciences Procurement Platforms Market
市场规模(十亿美元)
CAGR :
%
USD
274.42 Million
USD
642.06 Million
2025
2033
| 2026 –2033 | |
| USD 274.42 Million | |
| USD 642.06 Million | |
|
|
|
|
全球賦能生命科學採購平台市場細分,按組件(解決方案和服務)、部署模式(雲端、本地部署和混合部署)、技術(機器學習、自然語言處理、機器人流程自動化、生成式人工智慧和預測分析)、最終用戶(製藥公司、生物技術公司、合約研究組織、合約生產組織、醫療設備和診斷公司以及研究機構和學術實驗室)劃分-3年
人工智慧賦能的生命科學採購平台市場規模
- 2025年全球人工智慧賦能的生命科學採購平台市場規模為2.7442億美元 ,預計 2033年將達到6.4206億美元,預測期內 複合年增長率為11.21%。
- 市場成長主要得益於人工智慧、機器學習和自動化技術在生命科學採購工作流程中的日益普及,這些技術使企業能夠透過數據驅動的決策來優化採購、支出管理、供應商選擇和合規性。
- 此外,製藥、生物技術和研究機構面臨越來越大的壓力,需要提高營運效率、確保合規性並管理複雜的全球供應鏈,這使得人工智慧驅動的採購平台成為關鍵的數位基礎設施,從而顯著加速了整體市場成長。
人工智慧賦能的生命科學採購平台市場分析
- 人工智慧賦能的生命科學採購平台,利用人工智慧、機器學習和高級分析技術來簡化尋源、供應商管理和採購運營,由於其能夠提高複雜採購環境中的效率、透明度和合規性,因此正日益成為製藥、生物技術和研究機構不可或缺的數位化工具。
- 這些平台的日益普及主要是由生命科學領域在研發、臨床試驗和生產採購活動中優化採購成本、管理龐大且多元化的供應商生態系統以及提高決策準確性的需求所驅動的。
- 北美地區在人工智慧賦能的生命科學採購平台市場佔據主導地位,預計2025年將佔據41.0%的最大市場份額。這主要得益於雲端企業解決方案的廣泛應用、先進的人工智慧技術以及製藥和生物技術公司的高度集中。其中,美國在大型生命科學企業的平台部署方面處於領先地位。
- 預計亞太地區將在預測期內成為成長最快的地區,這主要得益於製藥和生物技術行業的快速擴張、採購流程日益數位化以及新興經濟體對基於雲端的人工智慧採購平台的日益普及。
- 解決方案領域在2025年佔據市場主導地位,營收份額達64.5%,這主要得益於市場對人工智慧驅動的採購軟體的強勁需求。這類軟體融合了機器學習、自然語言處理和預測分析技術,旨在實現採購工作流程自動化,並為生命科學機構提供可執行的洞察。
報告範圍及人工智慧賦能的生命科學採購平台市場區隔
|
屬性 |
人工智慧賦能的生命科學採購平台關鍵市場洞察 |
|
涵蓋部分 |
|
|
覆蓋國家/地區 |
北美洲
歐洲
亞太
中東和非洲
南美洲
|
|
主要市場參與者 |
|
|
市場機遇 |
|
|
加值資料資訊集 |
除了提供市場價值、成長率、市場細分、地理覆蓋範圍和主要參與者等市場概況外,Data Bridge Market Research 精心編制的市場報告還包括深入的專家分析、患者流行病學、產品線分析、定價分析和監管框架。 |
人工智慧賦能的生命科學採購平台市場趨勢
加速採用人工智慧驅動的採購智慧和自動化
- 全球人工智慧賦能的生命科學採購平台市場的一個顯著且加速發展的趨勢是,機器學習、自然語言處理和預測分析等先進人工智慧技術的日益融合,旨在提升生命科學組織的採購智慧、自動化水平和決策能力。
- 這些平台正日益融入更廣泛的數位生態系統中,從而能夠與企業資源計劃 (ERP)、實驗室資訊管理系統 (LIMS) 和供應鏈平台無縫集成,以創建統一的、數據驅動的採購環境。
- 例如,人工智慧賦能的採購平台正被部署用於自動分析大量的支出和供應商數據,識別節約成本的機會,預測需求波動,並標記潛在的供應商風險,從而使採購團隊能夠主動出擊,而不是被動應對。
- 自然語言處理技術的應用實現了合約審查、關鍵條款提取和合規性檢查的自動化,顯著減少了人工工作量,並提高了高度監管的生命科學採購工作流程中的合約準確性。
- 此外,基於雲端的AI採購平台正在促進全球採購團隊、合約研究組織和合約製造合作夥伴之間的即時協作,從而支援對複雜的多區域供應商網路進行集中式可視性和控制。
- 隨著企業越來越重視人工智慧解決方案以提高效率、確保合規性並增強供應鏈韌性,這種朝向更智慧、自動化和整合的採購平台發展的趨勢正在重塑生命科學組織的採購策略。
人工智慧賦能的生命科學採購平台市場動態
司機
對成本優化、合規性和供應鏈可視性的需求日益增長
- 製藥、生物技術和研究機構面臨越來越大的壓力,需要在嚴格遵守監管規定的同時優化採購成本,這是推動人工智慧賦能的生命科學採購平台快速普及的主要因素。
- 例如,生命科學公司正越來越多地利用人工智慧驅動的採購解決方案,以即時了解供應商績效、支出模式和採購風險,從而在研發、臨床試驗和生產營運等各個環節做出更快、更明智的決策。
- 全球供應鏈日益複雜,加上頻繁的中斷和監管審查,正推動著對能夠利用預測分析來預測供應風險並確保關鍵材料和服務不間斷供應的平台的需求。
- 此外,生命科學企業正在進行的數位轉型以及向基於雲端的企業解決方案的轉變,使得人工智慧驅動的採購平台成為尋求可擴展且面向未來的採購基礎設施的組織的一項戰略投資。
- 人工智慧平台能夠自動執行重複性採購任務、減少人為錯誤並提高營運效率,這進一步推動了大型製藥公司、中型生物技術公司和合約研究組織(CRO)對人工智慧平台的採用。
- 生命科學供應鏈中提高永續性和供應商透明度的壓力日益增大,這也推動了對人工智慧採購平台的需求,這些平台能夠追蹤供應商的合規性、道德採購和環境指標。
- 外包模式(包括合約研究組織 (CRO) 和合約行銷組織 (CMO))的日益普及,進一步加速了對集中式人工智慧採購平台的需求,這些平台能夠高效管理多方採購工作流程。
克制/挑戰
數據整合複雜性和監管驗證要求
- 將人工智慧驅動的採購平台與現有遺留系統、分散的資料來源和企業應用程式集成,其複雜性對許多生命科學機構構成了重大挑戰,尤其是那些擁有高度客製化IT環境的機構。
- 例如,研發、臨床試驗和生產製造等環節的採購資料通常較為分散,需要大量的資料清洗和標準化處理,人工智慧模型才能提供準確可靠的洞察。
- 此外,生命科學機構還需要根據嚴格的監管標準和內部品質要求對人工智慧系統進行驗證,這可能會延長實施週期並增加部署成本。
- 資料安全、智慧財產權保護以及供應商和定價資料的保密性等方面的擔憂可能會進一步減緩人工智慧採購平台的普及,尤其是在部署基於雲端的人工智慧採購平台時。
- 能夠管理人工智慧模型和解讀高階採購分析的專業人才短缺,可能會構成障礙,尤其對於規模較小的生物技術公司和研究機構而言更是如此。
- 透過改善資料治理框架、預先驗證的人工智慧模型、加強網路安全措施和模組化平台架構來克服這些挑戰,對於促進人工智慧賦能的生命科學採購平台的更廣泛應用和持續成長至關重要。
人工智慧賦能的生命科學採購平台市場範圍
市場按組件、部署模式、技術和最終用戶進行細分。
- 按組件
根據組件組成,全球人工智慧賦能的生命科學採購平台市場可分為解決方案與服務兩大類。 2025年,解決方案板塊佔據市場主導地位,市佔率高達64.5%,這主要得益於製藥、生物技術和研究機構對人工智慧驅動的採購軟體的日益普及。這些解決方案在一個平台上提供支出分析、供應商管理、合約生命週期管理和合規性監控等整合功能。生命科學機構越來越傾向於選擇能夠自動化複雜採購流程並確保合規性的綜合軟體解決方案。雲端人工智慧解決方案的出現進一步增強了可擴展性和即時決策能力。此外,這些解決方案還使機構能夠利用機器學習和預測分析來優化成本並降低供應商風險。這些強大的功能價值使解決方案成為市場的主要收入來源。
在實施、整合、客製化和託管服務需求不斷增長的推動下,服務板塊預計將在預測期內實現最快成長。生命科學機構通常在高度監管的環境下運營,因此在平台部署過程中需要專業的諮詢和驗證服務。從傳統系統遷移資料的複雜性日益增加,也推動了對專業服務的需求。此外,人工智慧模型調優、訓練和法規遵循支援的持續需求也在加速服務的普及。隨著中型生物技術公司和合約研究組織 (CRO) 採用人工智慧採購平台,對第三方服務提供者的依賴預計將會增加。這一趨勢使得服務板塊成為一個快速成長的領域。
- 按部署模型
根據部署模式,市場可分為雲端部署、本地部署和混合部署。由於其可擴展性、成本效益以及與企業系統易於整合等優勢,雲端部署模式在2025年佔據了市場主導地位。基於雲端的平台能夠讓地理位置分散的團隊和合作夥伴即時存取採購資料。生命科學公司越來越傾向於選擇雲端解決方案,因為其部署週期更短,軟體更新也更及時。這些平台還支援先進的人工智慧處理能力,而無需龐大的本地基礎設施。雲端供應商提供的增強型資料安全措施和合規認證進一步增強了使用者的信任。因此,雲端部署已成為大多數組織的首選。
在預測期內,混合部署模式預計將成為成長最快的細分市場,這主要得益於企業需要在資料控制和可擴展性之間取得平衡。混合模式允許企業在本地保留敏感的採購和合規數據,同時利用基於雲端的人工智慧分析。這種方法對擁有嚴格內部資料治理政策的大型製藥公司尤其具有吸引力。混合部署支援漸進式數位轉型,無需對系統進行徹底改造。此外,它還使企業能夠在遵守區域資料駐留法規的同時,受益於雲端創新。這些優勢正在加速混合採購平台的普及。
- 透過技術
基於技術,市場可細分為機器學習、自然語言處理、機器人流程自動化、生成式人工智慧和預測分析。機器學習領域在2025年佔據最大的市場份額,這主要得益於其在支出分析、供應商評分和需求預測方面的廣泛應用。機器學習演算法使採購平台能夠識別大型資料集中的隱藏模式,並隨著時間的推移提高決策準確性。生命科學機構高度依賴機器學習進行成本優化和供應商績效評估。這些功能對於管理涉及數千家供應商的複雜採購生態系統至關重要。從歷史採購資料中持續學習可以進一步提高營運效率。這種廣泛的適用性使機器學習成為主導技術領域。
在智慧自動化和決策支援領域日益增長的需求推動下,生成式人工智慧(GI)領域預計將在預測期內實現最快成長。生成式人工智慧能夠自動產生合約、供應商溝通和採購報告。它還支援對話式介面,使採購團隊能夠使用自然語言查詢與系統互動。生命科學機構正越來越多地探索生成式人工智慧,以減少人工工作量並提高生產力。將生成式人工智慧與採購分析結合,可增強策略規劃和情境建模能力。這些創新正在推動生成式人工智慧技術的快速普及。
- 最終用戶
根據最終用戶劃分,市場可細分為製藥公司、生物技術公司、合約研究組織 (CRO)、合約生產組織 (CMO)、醫療器材及診斷公司以及研究機構和學術實驗室。由於採購流程複雜且營運規模龐大,製藥公司在 2025 年仍佔據市場主導地位。製藥公司在研發、臨床試驗和生產製造等環節管理龐大的供應商網路。人工智慧賦能的採購平台可協助這些機構優化成本、管理合規性並確保供應連續性。對即時採購資訊和風險規避的需求進一步推動了人工智慧採購平台的應用。龐大的 IT 預算和對數位化技術的早期採用也鞏固了製藥公司的市場主導地位。因此,製藥公司仍然是最大的最終用戶群。
預計在預測期內,合約研究組織 (CRO) 領域將實現最快成長,這主要得益於臨床研究活動外包的日益普及。 CRO 需要管理跨多個申辦者、試驗和地區的採購工作,因此對集中式人工智慧平台的需求旺盛。這些平台能夠幫助 CRO 簡化供應商協調流程並提高透明度。臨床試驗數量的增長和全球試驗規模的擴大進一步推動了此類平台的應用。此外,CRO 越來越依賴基於雲端的採購解決方案來實現可擴展性和協作。這些因素使得 CRO 成為一個關鍵的高成長終端使用者群體。
人工智慧賦能的生命科學採購平台市場區域分析
- 北美地區在人工智慧賦能的生命科學採購平台市場佔據主導地位,預計2025年將佔據41.0%的最大市場份額。這主要得益於雲端企業解決方案的廣泛應用、先進的人工智慧技術以及製藥和生物技術公司的高度集中。其中,美國在大型生命科學企業的平台部署方面處於領先地位。
- 該地區的組織高度重視人工智慧驅動的支出分析、供應商風險管理和合規能力,以及採購平台與企業系統(例如 ERP 和供應鏈管理解決方案)的無縫整合。
- 大量研發投入、成熟的生命科學生態系統以及對提升供應鏈韌性和營運效率日益重視,進一步推動了人工智慧採購平台的廣泛應用,使其成為大型企業和新興生物技術公司不可或缺的數位化解決方案。
美國人工智慧賦能的生命科學採購平台市場洞察
2025年,美國人工智慧賦能的生命科學採購平台市場將佔據北美最大的市場份額,這主要得益於人工智慧的早期應用、高度成熟的生命科學生態系統以及對數位轉型的大力投入。總部位於美國的製藥和生物技術公司正日益重視人工智慧驅動的採購解決方案,以提高支出透明度、供應商風險管理和合規性。領先的生命科學企業、先進的IT基礎設施以及對供應鏈韌性的高度重視進一步加速了市場成長。此外,雲端企業平台的日益普及以及與ERP和分析系統的整合也顯著推動了美國市場的擴張。
歐洲人工智慧賦能的生命科學採購平台市場洞察
歐洲人工智慧賦能的生命科學採購平台市場預計在預測期內將以顯著的複合年增長率成長,主要驅動力來自嚴格的監管要求以及對採購透明度和合規性的日益重視。該地區強大的製藥生產基礎和數位化採購工具的日益普及也支撐著市場成長。歐洲企業正越來越多地利用人工智慧平台來管理複雜的供應商網絡,並確保符合不斷變化的法規要求。醫療保健和生命科學領域對數位轉型的持續投入進一步促進了人工智慧平台的應用。製藥、生物技術和醫療器材公司對該市場表現出了強勁的需求。
英國人工智慧賦能的生命科學採購平台市場洞察
受採購流程日益數位化和生命科學研發活動強勁成長的推動,英國人工智慧賦能的生命科學採購平台市場預計在預測期內將以顯著的複合年增長率成長。英國各組織正在採用人工智慧平台來優化採購成本並改善供應商協作。成熟的製藥公司和合約研究組織的存在推動了對集中式採購解決方案的需求。此外,政府支持醫療保健和生命科學領域數位化創新的措施也促進了市場成長。雲端平台的日益普及進一步推動了該平台的應用。
德國人工智慧賦能生命科學採購平台市場洞察
受德國強大的製藥生產基礎以及對流程效率和合規性的重視,德國人工智慧驅動的生命科學採購平台市場預計在預測期內將以可觀的複合年增長率成長。德國企業正越來越多地採用人工智慧驅動的採購平台,以提高營運透明度和供應商管理水平。對資料安全和監管合規的關注與先進的人工智慧解決方案高度契合。大型製造商將採購平台與企業系統整合的做法也日益普遍。這些因素共同支撐了德國市場的穩定成長。
亞太地區人工智慧賦能生命科學採購平台市場洞察
亞太地區人工智慧賦能的生命科學採購平台市場預計將在2026年至2033年的預測期內以最快的複合年增長率增長,這主要得益於該地區製藥和生物技術行業的快速擴張。數位轉型措施的增加、研發投入的不斷增長以及雲端企業平台的日益普及,都在加速市場成長。中國、印度和日本等國家對人工智慧賦能的採購解決方案的需求日益增長,以管理複雜的供應商生態系統。此外,合約生產和研究機構的日益增多也推動了平台的應用。這些因素使亞太地區成為成長最快的區域市場。
日本人工智慧賦能生命科學採購平台市場洞察
由於日本先進的技術環境以及對自動化和效率的高度重視,日本的人工智慧生命科學採購平台市場正蓬勃發展。日本製藥和生物技術公司正越來越多地採用人工智慧平台來優化採購流程並確保供應的連續性。人工智慧解決方案與現有企業系統的集成,正在支援數據驅動的決策。日本對精準性、合規性和卓越營運的重視進一步推動了人工智慧平台的應用。此外,對數位醫療基礎設施的持續投資也促進了市場成長。
印度人工智慧賦能生命科學採購平台市場洞察
2025年,印度人工智慧賦能的生命科學採購平台市場將佔據亞太地區最大的市場份額,主要得益於製藥和生物技術產業的快速成長。印度企業正越來越多地採用人工智慧賦能的採購平台來管理龐大的供應商群體並提高成本效益。該國不斷擴展的合約製造和研發生態系統也催生了對集中式採購解決方案的強勁需求。政府支持數位轉型和醫療現代化的措施進一步推動了市場成長。此外,經濟高效的雲端平台的普及也加速了中大型企業採用此類平台的步伐。
人工智慧賦能的生命科學採購平台市場份額
人工智慧賦能的生命科學採購平台產業主要由一些成熟企業引領,其中包括:
- Labviva(美國)
- Quartzy(美國)
- Coupa Software Inc.(美國)
- GEP(美國)
- SAP SE(德國)
- Ivalua Inc.(美國)
- JAGGAER(美國)
- Basware 公司(芬蘭)
- Procurify(加拿大)
- 貿易轉移(美國)
- Determine 公司(美國)
- Vroozi公司(美國)
- Xeeva公司(美國)
- Kissflow Inc.(印度)
- Precoro(美國)
- ProcurementExpress.com(加拿大)
- Levelpath(美國)
- Globality公司(美國)
- Tamr公司(美國)
- akiroLabs GmbH(德國)
全球人工智慧賦能的生命科學採購平台市場近期有哪些發展動態?
- 2025年6月,拜耳創新採購部門擴大了對Scientist.com人工智慧平台的使用,用於全球研發採購協調,使拜耳製藥和作物科學領域的團隊能夠在一個安全的環境中利用人工智慧工具進行供應商發現、競標、合規性檢查和支出分析,從而加速研發並提高效率。
- 2025年6月,Labviva在醫藥研發採購高峰會上展示了先進的人工智慧採購工具,包括自動化採購和庫存管理創新技術,展示了生命科學機構如何利用人工智慧提高成本效益並加速科學創新。
- 2025年6月,Labviva在其雲端平台上推出了由HarperChem人工智慧驅動的化學品供應鏈自動化套件,旨在實現實驗室原材料採購、儲存和補貨的自動化,從而幫助解決製藥和生物技術研發領域的供應鏈瓶頸問題。
- 2024年9月,Labviva推出了生命科學採購的即時庫存管理系統(IMS)。該系統利用人工智慧驅動的自動化技術,可對數百萬個SKU的庫存工作流程、預測和補貨進行管理,幫助研究人員和採購團隊優化庫存並減少浪費。
- 2024年7月,Scientist.com推出了Clinical Labs Navigator™,旨在擴展臨床採購能力,透過即時臨床試驗資訊和更廣泛的採購功能,增強其人工智慧驅動的研發採購平台。
SKU-
Get online access to the report on the World's First Market Intelligence Cloud
- Interactive Data Analysis Dashboard
- Company Analysis Dashboard for high growth potential opportunities
- Research Analyst Access for customization & queries
- Competitor Analysis with Interactive dashboard
- Latest News, Updates & Trend analysis
- Harness the Power of Benchmark Analysis for Comprehensive Competitor Tracking
研究方法
数据收集和基准年分析是使用具有大样本量的数据收集模块完成的。该阶段包括通过各种来源和策略获取市场信息或相关数据。它包括提前检查和规划从过去获得的所有数据。它同样包括检查不同信息源中出现的信息不一致。使用市场统计和连贯模型分析和估计市场数据。此外,市场份额分析和关键趋势分析是市场报告中的主要成功因素。要了解更多信息,请请求分析师致电或下拉您的询问。
DBMR 研究团队使用的关键研究方法是数据三角测量,其中包括数据挖掘、数据变量对市场影响的分析和主要(行业专家)验证。数据模型包括供应商定位网格、市场时间线分析、市场概览和指南、公司定位网格、专利分析、定价分析、公司市场份额分析、测量标准、全球与区域和供应商份额分析。要了解有关研究方法的更多信息,请向我们的行业专家咨询。
可定制
Data Bridge Market Research 是高级形成性研究领域的领导者。我们为向现有和新客户提供符合其目标的数据和分析而感到自豪。报告可定制,包括目标品牌的价格趋势分析、了解其他国家的市场(索取国家列表)、临床试验结果数据、文献综述、翻新市场和产品基础分析。目标竞争对手的市场分析可以从基于技术的分析到市场组合策略进行分析。我们可以按照您所需的格式和数据样式添加您需要的任意数量的竞争对手数据。我们的分析师团队还可以为您提供原始 Excel 文件数据透视表(事实手册)中的数据,或者可以帮助您根据报告中的数据集创建演示文稿。

