全球時尚領域人工智慧市場規模、份額及趨勢分析報告-產業概覽及至2033年預測

请求目录 请求目录 与分析师交谈 与分析师交谈 免费样本报告 免费样本报告 购买前请咨询 提前咨询 立即购买 立即购买

全球時尚領域人工智慧市場規模、份額及趨勢分析報告-產業概覽及至2033年預測

  • ICT
  • Upcoming Report
  • Jan 2021
  • Global
  • 350 页面
  • 桌子數: 220
  • 图号: 60
  • Author : Megha Gupta

通过敏捷供应链咨询解决关税挑战

供应链生态系统分析现已成为 DBMR 报告的一部分

Global Ai In Fashion Market

市场规模(十亿美元)

CAGR :  % Diagram

Chart Image USD 1.17 Billion USD 16.16 Billion 2025 2033
Diagram Forecast Period
2026 –2033
Diagram Market Size (Base Year)
USD 1.17 Billion
Diagram Market Size (Forecast Year)
USD 16.16 Billion
Diagram CAGR
%
Diagram Major Markets Players
  • Microsoft
  • IBM Corporation
  • Google
  • Amazon.comInc.
  • SAP SE

全球時尚人工智慧市場細分,按組件(解決方案和服務)、部署模式(雲端和本地部署)、應用(產品推薦、產品搜尋與發現、創意設計與趨勢預測、供應鏈管理與需求規劃、客戶關係管理、虛擬助理及其他)、類別(服裝、鞋履、美容化妝品、配件、腕錶、珠寶及其他)、最終用戶(時裝店和時尚)劃分產業趨勢

時尚市場中的人工智慧

時尚領域人工智慧市場規模

  • 2025年全球時尚領域人工智慧市場規模為11.7億美元,預計2033年將達到161.6億美元,預測期內 複合年增長率為38.85%。
  • 市場成長主要得益於人工智慧在時尚零售和設計流程中日益廣泛的應用,從而實現了產品開發、趨勢預測和個人化購物體驗的自動化。為了提升客戶互動和庫存效率,時尚品牌對數據驅動型洞察的需求不斷增長,促使他們採用基於人工智慧的工具和分析平台。
  • 此外,消費者對個人化時尚推薦和虛擬試穿體驗的日益青睞,正在加速線上零售商和設計師對人工智慧的採用。這些因素的融合,正透過提升營運效率、運用預測分析和以客戶為中心的創新,重塑全球時尚生態系統,進而推動市場擴張。

時尚市場人工智慧分析

  • 時尚領域的AI利用機器學習、電腦視覺和預測分析來變革產品設計、製造、行銷和零售等關鍵營運環節。透過分析大量的消費者和趨勢數據,AI使品牌能夠精準預測需求、優化供應鏈並提供客製化的時尚體驗。
  • 對數位化管道日益增長的依賴、電子商務的快速發展以及對個人化的競爭性關注,是推動時尚產業人工智慧應用的關鍵因素。隨著品牌將創新和永續發展置於優先地位,人工智慧技術在推動產業智慧自動化、創意效率和策略決策方面繼續發揮至關重要的作用。
  • 北美在時尚人工智慧市場佔據主導地位,預計到2025年將佔據超過40%的市場份額,這主要得益於北美擁有眾多知名時尚品牌以及支援人工智慧整合的先進技術基礎設施。
  • 由於互聯網普及率不斷提高、電子商務平台不斷擴張以及中國、日本和印度等新興經濟體的數位化進程加快,預計亞太地區將在預測期內成為時尚領域人工智慧市場成長最快的地區。
  • 由於人工智慧工具在產品設計、庫存管理和趨勢預測等領域的應用日益廣泛,解決方案領域在2025年將以61.9%的市場份額佔據主導地位。時尚零售商和品牌越來越依賴人工智慧解決方案進行個人化推薦、視覺搜尋和預測分析,以增強客戶互動並提高營運效率。人工智慧解決方案能夠處理大量資料集,即時洞察消費者偏好和市場趨勢,這進一步鞏固了其市場主導地位。

報告範圍及人工智慧在時尚市場區隔的應用

屬性

時尚界人工智慧關鍵市場洞察

涵蓋部分

  • 按組件分類:解決方案和服務
  • 依部署模式:雲端和本機部署
  • 依應用領域劃分:產品推薦、產品搜尋與發現、創意設計與趨勢預測、供應鏈管理與需求規劃、客戶關係管理、虛擬助理等
  • 按類別:服裝、鞋類、美容化妝品、配件、手錶、珠寶及其他
  • 最終用戶:時裝店和時裝設計師

覆蓋國家/地區

北美洲

  • 我們
  • 加拿大
  • 墨西哥

歐洲

  • 德國
  • 法國
  • 英國
  • 荷蘭
  • 瑞士
  • 比利時
  • 俄羅斯
  • 義大利
  • 西班牙
  • 火雞
  • 歐洲其他地區

亞太

  • 中國
  • 日本
  • 印度
  • 韓國
  • 新加坡
  • 馬來西亞
  • 澳洲
  • 泰國
  • 印尼
  • 菲律賓
  • 亞太其他地區

中東和非洲

  • 沙烏地阿拉伯
  • 阿聯酋
  • 南非
  • 埃及
  • 以色列
  • 中東和非洲其他地區

南美洲

  • 巴西
  • 阿根廷
  • 南美洲其他地區

主要市場參與者

  • 微軟公司(美國)
  • IBM公司(美國)
  • Google LLC(美國)
  • 亞馬遜公司(美國)
  • SAP SE(德國)
  • Adobe公司(美國)
  • 甲骨文公司(美國)
  • Catchoom Technologies, SL(西班牙)
  • 華為技術有限公司(中國)
  • Heuritech(法國)
  • 寬眼科技(西班牙)
  • FindMine公司(美國)
  • Intelistyle有限公司(英國)
  • Lily AI(美國)
  • Syte(以色列)

市場機遇

  • 虛擬試穿與造型平台的擴展
  • 將人工智慧融入永續和循環時尚實踐

加值資料資訊集

除了市場價值、成長率、市場細分、地理覆蓋範圍、市場參與者和市場狀況等市場洞察外,Data Bridge Market Research 團隊精心編制的市場報告還包括深入的專家分析、進出口分析、定價分析、生產消費分析和 PESTLE 分析。

時尚市場趨勢中的人工智慧

生成式人工智慧在時尚設計領域的應用日益廣泛

  • 由於生成式人工智慧技術在創意和設計流程中的應用日益廣泛,時尚領域的人工智慧市場正經歷快速成長。這些人工智慧模型使設計師能夠更有效率地產生創新圖案、風格和虛擬樣品,從而縮短產品上市時間並拓展創意空間。
    • 例如,The Fabricant 和 Adidas 等品牌已將生成式人工智慧工具整合到其設計工作流程中,以創建獨特的數位服裝並客製化服裝系列。這些舉措表明,人工智慧如何透過最大限度地減少實體原型製作的需求,來支持創意實驗和永續設計。
  • 生成式人工智慧透過分析包括社群媒體、時裝秀和消費者行為在內的龐大數據集,促進趨勢預測,為設計師提供洞察,以便根據新興的消費者偏好調整系列產品。這種預測能力增強了時尚公司的敏捷性和市場反應能力。
  • 此外,人工智慧驅動的3D建模和虛擬試穿平台透過提供沉浸式和互動式的購物體驗,提升了客戶參與度。這項技術使客戶能夠以數位方式預覽服裝的合身度和款式,從而增強購買信心並降低退貨率。
  • 人工智慧新創公司、時尚品牌和技術供應商之間日益密切的合作,正在加速開發專為滿足時尚產業獨特需求而量身定制的人工智慧應用。這些合作關係正在推動創新,將人工智慧無縫整合到設計、製造和零售營運中。
  • 總體而言,生成式人工智慧在時尚領域的日益普及,預示著一場更廣泛的數位轉型正在重塑該行業的創意、永續性和客戶體驗。這一趨勢凸顯了人工智慧作為創新和差異化競爭催化劑的戰略作用。

時尚市場動態中的人工智慧

司機

消費者對個人化購物體驗的需求日益增長

  • 消費者對客製化和個人化時尚產品的需求是推動人工智慧技術在時尚產業日益普及的重要因素。人工智慧使品牌能夠分析個人偏好和購買歷史,從而提供量身定制的推薦和專屬設計,引起不同客戶群的共鳴。
    • 例如,Stitch Fix 利用先進的人工智慧演算法結合專業造型師,為顧客提供高度個人化的服裝搭配,進而提升顧客的參與和滿意度。這種由人工智慧驅動的個人化模式,將技術與專家洞察相結合,正在塑造時尚零售業的新標準。
  • 電子商務和行動購物平台的蓬勃發展,提高了消費者對流暢、直覺的個人化體驗的期望。人工智慧能夠幫助品牌基於即時消費者數據優化庫存管理、定價和促銷策略,進而提升轉換率和客戶忠誠度。
  • 此外,個人化正日益影響永續消費模式,它讓顧客能夠根據自己的風格和尺寸做出明智的選擇,從而減少過度生產和浪費。人工智慧提供精準的合身度和風格推薦的能力,也支持了這種向永續時尚的轉變。
  • 數據分析和人工智慧生成的洞察在產品開發和行銷策略制定中的重要性日益凸顯,這進一步強化了整個產業對個人化能力的投入。這種不斷變化的格局正在催生更多以消費者為中心的商業模式和競爭優勢。

克制/挑戰

高昂的實施成本和資料隱私問題

  • 開發和整合先進人工智慧系統成本高昂,這對時尚公司,尤其是中小企業來說,構成了一項顯著挑戰。軟體開發、基礎設施和專業人才招募的高昂費用可能會限制其廣泛應用。
    • 例如,精品品牌和新興設計師可能難以像大型全球時裝公司一樣為人工智慧專案提供資金,從而導致技術應用和市場定位方面的差距。克服這些資金障礙對於在各行業領域普及人工智慧的優勢至關重要。
  • 資料隱私和安全問題帶來了額外的挑戰,因為人工智慧系統需要大量的消費者資料才能有效運作。遵守 GDPR 和 CCPA 等法規要求採取嚴格的資料處理措施,以保護使用者資訊並維護客戶信任。
  • 此外,管理和整合異質資料來源,同時確保人工智慧的合乎倫理的使用,其複雜性也增加了實施難度。人工智慧決策過程的透明度和演算法偏差的緩解是需要持續關注的難題。
  • 透過可擴展的人工智慧解決方案、策略合作夥伴關係和健全的資料治理框架來應對這些財務和監管挑戰,對於充分釋放人工智慧在時尚領域的潛力至關重要。持續的投資和合作是平衡創新與隱私和包容性的關鍵。

人工智慧在時尚市場的應用範圍

市場按組件、部署模式、應用程式、類別和最終用戶進行細分。

  • 按組件

根據組件劃分,時尚領域的人工智慧市場可分為解決方案和服務兩大類。解決方案板塊佔據市場主導地位,預計到2025年將以61.9%的市場份額位居榜首,這主要得益於人工智慧工具在產品設計、庫存管理和趨勢預測等領域的日益普及。時尚零售商和品牌越來越依賴人工智慧解決方案進行個人化推薦、視覺搜尋和預測分析,以增強客戶互動並提高營運效率。人工智慧解決方案能夠處理大量資料集,即時洞察消費者偏好和市場趨勢,這進一步鞏固了其市場主導地位。

預計2026年至2033年間,服務領域將實現最快成長,這主要得益於對人工智慧系統諮詢、整合和維護支援需求的不斷增長。時尚品牌越來越傾向於尋求專業服務,以便根據其獨特的設計流程和零售目標部署和客製化人工智慧工具。此外,人工智慧實施的複雜性,以及機器學習演算法的不斷進步,也促使企業需要建立長期服務合作夥伴關係,以實現最佳化和可擴展性。

  • 按部署模式

根據部署模式,時尚產業的AI市場可分為雲端部署和本地部署。由於其可擴展性、較低的基礎設施成本以及與電商和零售平台的便捷集成,雲端部署預計將在2025年佔據市場主導地位。基於雲端的AI解決方案使時尚公司能夠利用即時數據分析,並有效率地實現從設計到交付流程的自動化。線上零售和全通路模式的廣泛應用進一步鞏固了雲端部署作為AI驅動型應用首選模式的地位。

預計從2026年到2033年,本地部署方案將以最快的複合年增長率成長,這主要得益於高端時尚品牌對更高資料安全性和控制力的需求。處理專有設計和機密消費者資料的企業更傾向於選擇本地部署解決方案,以實現更高的客製化程度和隱私保障。能夠在內部維護人工智慧模型,同時遵守監管和資料保護規範,進一步增強了本地部署方案對高端時尚企業的吸引力。

  • 透過申請

根據應用領域,時尚人工智慧市場可細分為產品推薦、產品搜尋與發現、創意設計與趨勢預測、供應鏈管理與需求規劃、客戶關係管理、虛擬助理等。在人工智慧演算法廣泛應用於線上時尚零售平台的推動下,產品推薦領域預計將在2025年佔據市場主導地位。這些系統透過分析消費者行為、購買歷史和瀏覽模式,提供個人化推薦,進而提升銷售轉換率。電商巨頭越來越依賴推薦引擎來提高用戶參與度和客戶留存率。

預計從2026年到2033年,創意設計和趨勢預測領域將實現最快成長,因為人工智慧能夠幫助設計師精準預測未來的風格和色彩趨勢。人工智慧驅動的設計工具透過分析社群媒體洞察、歷史數據和時尚檔案,激發創新系列靈感並縮短設計週期。這種能力既能提升創造力,又能與市場需求保持一致,幫助品牌在瞬息萬變的時尚格局中保持敏捷性和競爭力。

  • 按類別

依類別劃分,時尚領域的AI市場可細分為服裝、鞋履、美妝、配件、腕錶、珠寶及其他。預計到2025年,服裝領域將佔據市場主導地位,這主要歸功於線上服裝銷售產生的大量數據,以及人們對AI驅動的虛擬試穿和尺寸推薦系統的日益關注。時尚零售商利用AI技術實現服裝系列的個人化定制,並高效管理跨多個銷售管道的庫存。服裝產業豐富的產品種類和龐大的消費群體使其成為AI投資的重點領域。

預計從2026年到2033年,美容化妝品產業將以最快的速度成長,這主要得益於人工智慧在個人化護膚分析、虛擬試妝工具和產品配方方面的應用。美容品牌正在利用人工智慧了解消費者偏好,並透過擴增實境應用程式提供客製化的產品推薦。人工智慧與虛擬購物體驗的融合提升了使用者滿意度,並推動了美容科技生態系統的創新。

  • 最終用戶

依終端用戶劃分,時尚領域的AI市場可分為時尚零售商和時尚設計師兩大板塊。由於AI驅動的分析技術在銷售預測、客戶互動和庫存優化方面的快速應用,預計到2025年,時尚零售商將佔據最大的市場份額。零售連鎖店和線上商店利用AI進行視覺行銷和預測性需求分析,以使產品供應與不斷變化的消費者口味保持一致。將AI融入全通路零售策略,進一步提升了時尚零售商的營運效率。

預計從2026年到2033年,時裝設計師產業將迎來最快的成長,這主要得益於人工智慧工具的廣泛應用,這些工具能夠輔助創意設計、圖案生成和趨勢預測。設計師們正在利用人工智慧平台簡化概念開發流程,並從全球時尚數據中獲取見解。這項技術能夠加快原型製作速度,並促進創新設計實驗,從而在時尚產業開啟數據驅動創意的新時代。

時尚領域人工智慧市場區域分析

  • 北美在時尚人工智慧市場佔據主導地位,預計到2025年將佔據超過40%的最大收入份額,這主要得益於主要時尚品牌的強大影響力以及支援人工智慧整合的先進技術基礎設施。
  • 該地區對數位轉型的大力投入,加上對個人化時尚體驗的需求,促進了人工智慧解決方案在電子商務和零售平台的快速普及。
  • 此外,強勁的消費支出以及透過預測分析和智慧庫存管理對永續發展的重視,也進一步鞏固了該地區的市場成長。

美國時尚界人工智慧市場洞察

2025年,美國時尚人工智慧市場在北美佔據最大的市場份額,這主要得益於人工智慧驅動的設計工具、虛擬造型師和推薦系統的廣泛應用。時尚零售商越來越多地利用人工智慧來增強消費者互動並優化供應鏈營運。領先的人工智慧解決方案提供商和時尚科技新創公司的存在,以及消費者對個人化線上購物日益增長的偏好,持續加速美國時尚市場的成長。

歐洲時尚人工智慧市場洞察

受零售業快速數位轉型以及對符合道德規範和永續時尚的關注的推動,預計歐洲時尚人工智慧市場在預測期內將以顯著的複合年增長率成長。歐洲品牌正積極採用人工智慧進行趨勢預測、打造虛擬試衣間以及優化生產流程,以減少浪費並提升個人化客製化體驗。該地區對數位化創新的大力監管支援以及人工智慧與全通路零售策略的融合,進一步鞏固了其在全球市場中的地位。

英國時尚界人工智慧市場洞察

在英國蓬勃發展的電子商務產業和時尚科技創新早期應用的推動下,英國時尚領域的AI市場預計將在預測期內實現顯著成長。英國的零售商和設計師正在利用AI技術,透過虛擬試穿解決方案和時尚趨勢預測分析來提升客戶體驗。日益增長的可持續發展意識,以及AI在減少過度生產方面的作用,進一步刺激了市場的擴張。

德國時尚人工智慧市場洞察

德國時尚界的AI市場預計將以顯著的速度成長,這主要得益於人工智慧技術在智慧製造、供應鏈透明化和產品個人化方面的廣泛應用。德國時尚品牌正在利用人工智慧來提高設計效率並實施永續的生產方式。德國強大的技術基礎設施和對數據驅動創新的重視,使其成為歐洲時尚產業人工智慧應用的重要推動力。

亞太地區時尚人工智慧市場洞察

受互聯網普及率不斷提高、電子商務平台不斷擴張以及中國、日本和印度等新興經濟體數位化進程的推動,亞太地區時尚人工智慧市場預計將在2026年至2033年間以最快的複合年增長率增長。該地區龐大的年輕人口、不斷增長的可支配收入以及對線上時尚購物的濃厚興趣,加速了人工智慧在產品推薦和虛擬試穿工具方面的應用。此外,該地區強大的製造業基礎和快速的技術進步也為人工智慧驅動的時尚創新創造了充滿活力的生態系統。

日本時尚人工智慧市場洞察

由於擁有先進的科技生態系統和消費者對智慧時尚體驗的旺盛需求,日本時尚領域的AI市場正經歷強勁成長。日本零售商和設計師正將AI融入創意設計、趨勢分析和客戶服務等應用中。該國對時尚製造創新和自動化的重視也推動了AI在提升設計精度和營運效率方面的應用。

中國時尚人工智慧市場洞察

到2025年,中國時尚人工智慧市場將佔據亞太地區最大的市場份額,這主要得益於快速的城市化進程、蓬勃發展的電子商務以及對人工智慧基礎設施的大力投資。中國時尚品牌正廣泛應用人工智慧進行預測分析、虛擬時裝秀和消費者行為分析。中國在數位零售生態系統中的領先地位以及眾多人工智慧驅動的時尚新創企業的存在,都極大地推動了該地區市場的擴張。

時尚領域人工智慧市場份額

時尚產業的AI應用主要由一些知名公司引領,其中包括:

  • 微軟公司(美國)
  • IBM公司(美國)
  • Google LLC(美國)
  • 亞馬遜公司(美國)
  • SAP SE(德國)
  • Adobe公司(美國)
  • 甲骨文公司(美國)
  • Catchoom Technologies, SL(西班牙)
  • 華為技術有限公司(中國)
  • Heuritech(法國)
  • 寬眼科技(西班牙)
  • FindMine公司(美國)
  • Intelistyle有限公司(英國)
  • Lily AI(美國)
  • Syte(以色列)

全球時尚市場人工智慧的最新發展

  • 2025年9月,Vivrelle與Revolve和FWRD合作推出了Ella,這是一款由人工智慧驅動的個人造型工具,旨在將租賃、轉售和零售體驗整合到一個平台上。此次合作標誌著人工智慧驅動的時尚個人化領域取得了重大進展,使消費者能夠根據數據洞察獲得精心挑選的穿搭建議。此舉進一步強化了人工智慧在提升全通路零售策略和增強奢侈時尚領域客戶參與度方面的作用。
  • 2025年1月,Raspberry AI獲得由Andreessen Horowitz領投的2400萬美元A輪融資,用於加速其面向時尚設計的文本轉圖像生成式人工智慧平台的開發。該公司的技術使Under Armour和MCM Worldwide等品牌能夠快速產生設計原型,從而縮短創意週期並提高成本效益。這項投資凸顯了生成式人工智慧在革新時尚產業產品開發流程方面日益增長的重要性。
  • 2024年12月,Browzwear宣布收購總部位於阿姆斯特丹的新創公司Lalaland.ai。 Lalaland.ai專注於超逼真的AI生成時裝模型。此次收購透過提升模型多樣性和視覺精準度,擴展了Browzwear在數位時裝設計和虛擬打樣方面的能力。 Lalaland.ai技術的整合將支持更具包容性和高效性的時裝視覺化,進一步強化AI在重塑數位時裝呈現和電商展示方式方面的重要作用。
  • 2024年10月,史丹佛大學支持的新創公司Kridha Inc.推出了全球首個通用時尚AI代理,無需直接與品牌整合即可在數百萬個時尚網站上運行。這項創新覆蓋了美國近90%的時尚電商市場,為消費者提供無縫的產品發現和個人化推薦。此次發布標誌著人工智慧應用發展的一個關鍵時刻,它打破了數據孤島,並透過先進的跨平台智慧徹底改變了用戶的購物體驗。
  • 2024年8月,印度時尚科技新創公司Shoppin從InfoEdge Ventures融資100萬美元,用於推進其人工智慧驅動的發現引擎。該引擎使用戶能夠透過提示、圖片和風格線索搜尋服裝。這筆融資凸顯了新興市場對人工智慧的日益重視,旨在提高產品搜尋的準確性和用戶個人化體驗。這項進展進一步鞏固了印度在全球時尚零售生態系統人工智慧創新領域的重要地位。


SKU-

Get online access to the report on the World's First Market Intelligence Cloud

  • Interactive Data Analysis Dashboard
  • Company Analysis Dashboard for high growth potential opportunities
  • Research Analyst Access for customization & queries
  • Competitor Analysis with Interactive dashboard
  • Latest News, Updates & Trend analysis
  • Harness the Power of Benchmark Analysis for Comprehensive Competitor Tracking
Request for Demo

研究方法

数据收集和基准年分析是使用具有大样本量的数据收集模块完成的。该阶段包括通过各种来源和策略获取市场信息或相关数据。它包括提前检查和规划从过去获得的所有数据。它同样包括检查不同信息源中出现的信息不一致。使用市场统计和连贯模型分析和估计市场数据。此外,市场份额分析和关键趋势分析是市场报告中的主要成功因素。要了解更多信息,请请求分析师致电或下拉您的询问。

DBMR 研究团队使用的关键研究方法是数据三角测量,其中包括数据挖掘、数据变量对市场影响的分析和主要(行业专家)验证。数据模型包括供应商定位网格、市场时间线分析、市场概览和指南、公司定位网格、专利分析、定价分析、公司市场份额分析、测量标准、全球与区域和供应商份额分析。要了解有关研究方法的更多信息,请向我们的行业专家咨询。

可定制

Data Bridge Market Research 是高级形成性研究领域的领导者。我们为向现有和新客户提供符合其目标的数据和分析而感到自豪。报告可定制,包括目标品牌的价格趋势分析、了解其他国家的市场(索取国家列表)、临床试验结果数据、文献综述、翻新市场和产品基础分析。目标竞争对手的市场分析可以从基于技术的分析到市场组合策略进行分析。我们可以按照您所需的格式和数据样式添加您需要的任意数量的竞争对手数据。我们的分析师团队还可以为您提供原始 Excel 文件数据透视表(事实手册)中的数据,或者可以帮助您根据报告中的数据集创建演示文稿。

Frequently Asked Questions

市场是基于 全球時尚人工智慧市場細分,按組件(解決方案和服務)、部署模式(雲端和本地部署)、應用(產品推薦、產品搜尋與發現、創意設計與趨勢預測、供應鏈管理與需求規劃、客戶關係管理、虛擬助理及其他)、類別(服裝、鞋履、美容化妝品、配件、腕錶、珠寶及其他)、最終用戶(時裝店和時尚)劃分產業趨勢 进行细分的。
在2025年,全球時尚領域人工智慧市場的规模估计为1.17 USD Billion美元。
全球時尚領域人工智慧市場预计将在2026年至2033年的预测期内以CAGR 38.85%的速度增长。
市场上的主要参与者包括Microsoft, IBM Corporation, Google, Amazon.comInc., SAP SE, Adobe, Oracle, Catchoom Technologies, S.L, Huawei Technologies Co.Ltd., Heuritech, WIDE EYES TECHNOLOGIES, FindMineInc., Intelistyle Ltd, Lily AI, Syte。
Testimonial