全球金融科技市場人工智慧—產業趨勢及2029年預測

请求目录 请求目录 与分析师交谈 与分析师交谈 免费样本报告 免费样本报告 购买前请咨询 提前咨询 立即购买 立即购买

全球金融科技市場人工智慧—產業趨勢及2029年預測

  • ICT
  • Upcoming Report
  • Apr 2022
  • Global
  • 350 页面
  • 桌子數: 220
  • 图号: 60
  • Author : Megha Gupta

通过敏捷供应链咨询解决关税挑战

供应链生态系统分析现已成为 DBMR 报告的一部分

Global Ai In Fintech Market

市场规模(十亿美元)

CAGR :  % Diagram

Chart Image USD 13.14 Billion USD 765.34 Billion 2021 2029
Diagram Forecast Period
2022 –2029
Diagram Market Size (Base Year)
USD 13.14 Billion
Diagram Market Size (Forecast Year)
USD 765.34 Billion
Diagram CAGR
%
Diagram Major Markets Players
  • BigMLInc.
  • Cisco SystemsInc.
  • FICO
  • Hewlett Packard Enterprise Development LP
  • RapidMinerInc.

全球金融科技市場人工智慧,按組件(解決方案和服務)、部署模式(雲端和本地)、應用程式(虛擬助理、業務分析和報告、客戶行為分析等)劃分——行業趨勢和預測到 2029 年。

金融科技市場中的人工智慧

全球金融科技人工智慧市場分析及規模

金融科技領域的人工智慧能夠管理大量數據,從而獲得有價值的洞察,並更好地理解客戶及其行為。越來越多的中小型終端用戶越來越意識到將先進技術與金融服務結合的重要性。 RapidMiner, Inc.(美國)、SAP SE(德國)、SAS Institute Inc.(美國)、微軟(美國)、Google有限責任公司(美國)和惠普企業發展有限公司(美國)是該市場的一些主要參與者。

全球金融科技人工智慧市場定義

從名稱本身就可以看出,金融科技(financial tech)是指將人工智慧等先進技術與金融服務結合,以防範詐欺活動。人工智慧在金融科技中的作用是促進機器人顧問的運作,從而提供財務規劃服務。  

報告範圍和市場細分

報告指標

細節

預測期

2022年至2029年

基準年

2021

歷史歲月

2020(可自訂為 2019 - 2014)

定量單位

收入(十億美元)、銷售(單位)、定價(美元)

涵蓋的領域

元件(解決方案和服務)、開發模式(雲端和本地)、應用程式(虛擬助理、業務分析和報告、客戶行為分析等)

覆蓋國家

北美洲的美國、加拿大和墨西哥、德國、法國、英國、荷蘭、瑞士、比利時、俄羅斯、義大利、西班牙、土耳其、歐洲的其他地區、中國、日本、印度、韓國、新加坡、馬來西亞、澳洲、泰國、印尼、菲律賓、亞太地區(APAC)的其他地區、沙烏地阿拉伯、阿聯酋、南非、埃及、以色列、中東和非洲(MEA)的其他地區(MEA)的其他地區。

涵蓋的市場參與者

BigML, Inc.(美國)、思科系統公司(美國)、FICO(美國)、Hewlett Packard Enterprise Development LP(美國)、RapidMiner, Inc.(美國)、SAP SE(德國)、SAS Institute Inc.(美國)、微軟(美國)、Google, LLC(美國)、Salesforce.com Inc.(美國)、IBM. Technologies(美國)、IPsoft(美國)、Nuance Communications(美國)和 ComplyAdvantage(英國)

市場機會

  • 高速網路普及率成長
  • 網路犯罪分子數量不斷增加   
  • 不斷增加的研發機會

全球金融科技人工智慧市場動態

本節旨在了解市場驅動因素、優勢、機會、限制因素和挑戰。下文將詳細討論這些內容:

驅動程式:

  • 增加研發投入,為創新開闢道路

策略市場合作的不斷增多,帶動了用於發展和研發打擊詐欺活動的先進自動化技術/設備的資金增加。此外,研發投入的提升將為資訊科技創新鋪路。人工智慧和機器學習技術的日益融合,將進一步促進市場發展。      

  • 全球產業數量增加,導致新興國家的需求和供應增加  

全球中小企業數量的成長是推動市場成長的主要因素之一。換句話說,銀行、金融服務和保險(BFSI)、教育、能源和公用事業、政府和公共部門、醫療保健和生命科學、製造業、零售和電子商務、電信和IT行業數量的成長 直接影響著市場的成長率。

  • 網路攻擊日益增多,為小型企業帶來大量機會

全球經濟的崛起,為資訊和通訊技術產業帶來了巨大的成長空間。然而,隨著組織資料量的不斷增長,網路犯罪活動的數量也在增加。這可能會損害組織的信譽並篡改記錄。這將進一步創造良好的成長空間。    

機會:

  • 基於雲端的防火牆帶來許多機會

城市化、現代化和全球化的不斷推進推動了市場價值的成長。換句話說, 中小企業,尤其是發展中經濟體的中小企業,越來越意識到雲端防火牆在基礎建設方面的優勢,這將為市場成長帶來巨大的機會。

其他市場成長決定因素包括:工業 基礎設施的 不斷改進、服務供應商數量有限、集中式策略管理和簡化安裝方式的日益普及以及組織資料集的不斷增長。 此外,預測期(2022 年至 2029 年),發展中經濟體高速網路的日益普及將為市場參與者帶來獲利機會。此外,企業網路對未經授權和前所未有的攻擊的防禦需求日益增長,以及無縫擴展性帶來的服務使用量不斷增長,這些都將進一步擴大市場未來的成長。 

全球金融科技市場人工智慧的限制/挑戰

  • 越來越多的法規限制了長期成長範圍

日益增多的監管合規要求以及有限的技術專長將阻礙市場的成長。此外,缺乏經驗豐富的顧問來開發金融科技領域的人工智慧,也將縮小市場的成長空間。此外,由於新冠疫情導致商業活動暫停,也將再次造成阻礙。    

  • 複雜性將對空前成長的市場需求構成威脅

基於雲端的部署模型的複雜性將對市場成長率構成挑戰。此外,基於雲端的部署模式的普及僅限於大型企業,這將進一步阻礙市場成長率。    

此外,欠發達地區認知度的缺乏以及部署成本的高昂也將成為市場成長的限制因素。落後經濟體缺乏強大的基礎設施以及對安全保障的缺乏也將對市場成長率構成挑戰。

這份金融科技市場人工智慧報告詳細介紹了最新發展動態、貿易法規、進出口分析、生產分析、價值鏈優化、市場份額、國內和本地市場參與者的影響,並分析了新興收入來源、市場法規變化、戰略市場增長分析、市場規模、類別市場增長、應用領域和主導地位、產品審批、產品發布、地域擴展以及市場技術創新等方面的機遇。如需了解更多關於金融科技市場人工智慧的信息,請聯繫 Data Bridge 市場研究部門以獲取分析師簡報,我們的團隊將協助您做出明智的市場決策,實現市場成長。

COVID-19 對金融科技市場人工智慧的影響

近期爆發的新冠病毒疫情對市場而言無疑是利好消息。疫情導致商業活動暫停,並引發全球供應鏈中斷、邊境管制以及政府機構的旅遊限制。這促使銀行和金融科技機構紛紛轉向居家辦公。此外,全球銀行機構迅速採用人工智慧和機器學習工具來執行關鍵工作,進一步為市場創造了良好的成長空間。此外,截至2020年底,全球企業對雲端解決方案的投資不斷增加,以促進遠距辦公的便利化。

最新動態

  • 2020 年 4 月,為金融機構提供數位轉型、客戶旅程和客戶生命週期管理 (CLM) 解決方案的 Fenergo 與 IBM 簽署了一項原始設備製造 (OEM) 協議,該協議可能允許公司合作開發解決方案,幫助客戶應對他們面臨的眾多財務風險。
  • 2020年5月,Sentifi AG宣布擴展基於另類資料的分析功能,以發現投資機會並管理風險。 Sentifi 的新分析解決方案包括檢測行業異常值、行業異常值、可能影響資產估值的ESG事件以及即時趨勢的投資主題,同時幫助投資者識別其投資組合中的異常值。

全球金融科技人工智慧市場範圍

金融科技領域的人工智慧市場根據組件、部署模式和應用進行細分。這些細分市場的成長將有助於您分析行業中成長乏力的細分領域,並為用戶提供有價值的市場概覽和市場洞察,幫助他們做出策略決策,從而識別核心市場應用。

成分

  • 解決方案
  • 服務

根據構成要素,金融科技人工智慧市場可細分為解決方案和服務。根據解決方案,市場進一步細分為軟體工具和平台。根據服務,市場進一步細分為託管型和專業型。 

部署模式

  • 本地

根據部署模式,金融科技市場的人工智慧分為 雲端 和本地部署。

應用

  • 虛擬助手
  • 業務分析和報告
  • 客戶行為分析
  • 其他的

根據應用,金融科技市場中的人工智慧細分為虛擬助理、業務分析和報告、客戶行為分析等。

金融科技市場中的人工智慧區域分析/洞察

對金融科技市場中的人工智慧進行了分析,並按國家、組件、部署模式和應用提供了市場規模洞察和趨勢(如上所述)。

金融科技市場人工智慧報告涵蓋的國家包括北美的美國、加拿大和墨西哥、歐洲的德國、法國、英國、荷蘭、瑞士、比利時、俄羅斯、義大利、西班牙、土耳其、歐洲其他地區、中國、日本、印度、韓國、新加坡、馬來西亞、澳洲、泰國、印尼、菲律賓、亞太地區(APAC)的其他地區、沙烏地阿拉伯、阿聯酋、南非、埃及、泰國、中東和其他國家(阿根廷地區的其他地區)。

由於知名人工智慧軟體和系統供應商的強大影響力,以及政府和私人組織對研發活動發展和增長的聯合投資,北美在市場上佔據主導地位,而由於技術的不斷進步以及預防網路犯罪的需求不斷增加,亞太地區預計在 2022-2029 年的預測期內將實現增長。    

報告的國家部分還提供了影響各個市場當前和未來趨勢的因素以及市場監管變化。下游和上游價值鏈分析、技術趨勢、波特五力模型分析以及案例研究等數據點,是預測各國市場狀況的一些指標。此外,在對國家/地區數據進行預測分析時,還考慮了全球品牌的存在和可用性,以及它們因本土和國內品牌的激烈競爭或稀缺而面臨的挑戰,國內關稅和貿易路線的影響。   

金融科技市場競爭格局及人工智慧份額分析

金融科技市場人工智慧競爭格局提供了按競爭對手劃分的詳細資訊。詳細資訊包括公司概況、公司財務狀況、收入、市場潛力、研發投入、新市場舉措、全球佈局、生產基地和設施、生產能力、公司優勢和劣勢、產品發布、產品廣度和廣度以及應用主導地位。以上提供的數據僅與公司在金融科技市場對人工智慧的關注度相關。

金融科技市場人工智慧的一些主要參與者包括:

  • BigML, Inc.(美國)
  • 思科系統公司(美國)
  • FICO(美國)
  • 惠普企業開發有限公司(美國)
  • RapidMiner, Inc.(美國)
  • SAP SE(德國)
  • SAS Institute Inc.(美國)
  • 微軟(美國)
  • Google, LLC(美國)
  • Salesforce.com Inc.(美國)
  • IBM(美國)
  • 英特爾公司(美國)
  • 亞馬遜網路服務公司(美國)
  • Inbenta Technologies(美國)
  • IPsoft(美國)
  • Nuance Communications(美國)
  • ComplyAdvantage(英國)  

研究方法:金融科技市場中的全球人工智慧

資料收集和基準年分析使用具有大樣本量的資料收集模組進行。此階段包括透過各種來源和策略獲取市場資訊或相關數據。它包括檢查和規劃過去所獲得的所有數據。它同樣也涵蓋了對不同資訊來源之間資訊不一致的檢查。市場數據將使用市場統計和相關模型進行分析和估算。此外,市佔率分析和關鍵趨勢分析也是市場報告成功的關鍵因素。如需了解更多信息,請預約分析師電話或提交您的諮詢。

DBMR 研究團隊使用的關鍵研究方法是資料三角測量,它涉及資料探勘、資料變數對市場影響的分析以及初步(行業專家)驗證。此外,資料模型還包括供應商定位網格、市場時間軸分析、市場概覽和指南、公司定位網格、專利分析、定價分析、公司市場份額分析、測量標準、全球與區域對比以及供應商份額分析。

要了解有關研究方法的更多信息,請諮詢我們的行業專家

https://www.databridgemarketresearch.com/speak-to-analyst/?dbmr=global-ai-in-fintech-market


SKU-

Get online access to the report on the World's First Market Intelligence Cloud

  • Interactive Data Analysis Dashboard
  • Company Analysis Dashboard for high growth potential opportunities
  • Research Analyst Access for customization & queries
  • Competitor Analysis with Interactive dashboard
  • Latest News, Updates & Trend analysis
  • Harness the Power of Benchmark Analysis for Comprehensive Competitor Tracking
Request for Demo

目录

1 INTRODUCTION

1.1 OBJECTIVES OF THE STUDY

1.2 MARKET DEFINITION

1.3 OVERVIEW OF GLOBAL ARTIFICIAL INTELLIGENCE IN FINTECH MARKET

1.4 CURRENCY AND PRICING

1.5 LIMITATION

1.6 MARKETS COVERED

2 MARKET SEGMENTATION

2.1 KEY TAKEAWAYS

2.2 ARRIVING AT THE GLOBAL ARTIFICIAL INTELLIGENCE IN FINTECH MARKET

2.2.1 VENDOR POSITIONING GRID

2.2.2 TECHNOLOGY LIFE LINE CURVE

2.2.3 MARKET GUIDE

2.2.4 COMPANY POSITIONING GRID

2.2.5 MULTIVARIATE MODELLING

2.2.6 STANDARDS OF MEASUREMENT

2.2.7 TOP TO BOTTOM ANALYSIS

2.2.8 VENDOR SHARE ANALYSIS

2.2.9 DATA POINTS FROM KEY PRIMARY INTERVIEWS

2.2.10 DATA POINTS FROM KEY SECONDARY DATABASES

2.3 GLOBAL ARTIFICIAL INTELLIGENCE IN FINTECH MARKET: RESEARCH SNAPSHOT

2.4 ASSUMPTIONS

3 MARKET OVERVIEW

3.1 DRIVERS

3.2 RESTRAINTS

3.3 OPPORTUNITIES

3.4 CHALLENGES

4 EXECUTIVE SUMMARY

5 PREMIUM INSIGHTS

6 GLOBAL ARTIFICIAL INTELLIGENCE IN FINTECH MARKET, BY COMPONENT

6.1 OVERVIEW

6.2 SOLUTION

6.2.1 SOFTWARE TOOL

6.2.1.1. DATA DISCOVERY

6.2.1.2. DATA QUALITY AND DATA GOVERNANCE

6.2.1.3. DATA VISUALIZATION

6.2.2 PLATFORM

6.3 SERVICES

6.3.1 MANAGED SERVICES

6.3.2 PROFESSIONAL SERVICES

7 GLOBAL ARTIFICIAL INTELLIGENCE IN FINTECH MARKET, BY DEPLOYMENT MODE

7.1 OVERVIEW

7.2 CLOUD

7.3 ON-PREMISE

8 GLOBAL ARTIFICIAL INTELLIGENCE IN FINTECH MARKET, BY TECHNOLOGY

8.1 OVERVIEW

8.2 MACHINE LEARNING

8.3 NLP

8.4 DEEP LEARNING

8.5 OTHERS

9 GLOBAL ARTIFICIAL INTELLIGENCE IN FINTECH MARKET, BY APPLICATION

9.1 OVERVIEW

9.2 VIRTUAL ASSISTANT

9.2.1 MARKET BY DEPLOYMENT MODE

9.2.1.1. CLOUD

9.2.1.2. ON-PREMISE

9.3 BUSINESS ANALYTICS AND REPORTING

9.3.1 MARKET BY TYPE

9.3.1.1. REGULATORY AND COMPLIANCE MANAGEMENT

9.3.1.2. PREDICTIVE ANALYTICS

9.3.2 MARKET BY DEPLOYMENT MODE

9.3.2.1. CLOUD

9.3.2.2. ON-PREMISE

9.4 CUSTOMER BEHAVIOURAL ANALYTICS

9.4.1 MARKET BY TYPE

9.4.1.1. CREDIT SCORING

9.4.1.2. ASSET AND PORTFOLIO MANAGEMENT

9.4.1.3. DEBT COLLECTION

9.4.1.4. INSURANCE PREMIUM

9.4.2 MARKET BY DEPLOYMENT MODE

9.4.2.1. CLOUD

9.4.2.2. ON-PREMISE

9.5 OTHERS

9.5.1 MARKET BY DEPLOYMENT MODE

9.5.1.1. CLOUD

9.5.1.2. ON-PREMISE

10 GLOBAL ARTIFICIAL INTELLIGENCE IN FINTECH MARKET, BY REGION

GLOBAL ARTIFICIAL INTELLIGENCE IN FINTECH MARKET, (ALL SEGMENTATION PROVIDED ABOVE IS REPRESENTED IN THIS CHAPTER BY COUNTRY)

10.1 NORTH AMERICA

10.1.1 U.S.

10.1.2 CANADA

10.1.3 MEXICO

10.2 EUROPE

10.2.1 GERMANY

10.2.2 FRANCE

10.2.3 U.K.

10.2.4 ITALY

10.2.5 SPAIN

10.2.6 RUSSIA

10.2.7 TURKEY

10.2.8 BELGIUM

10.2.9 NETHERLANDS

10.2.10 SWITZERLAND

10.2.11 REST OF EUROPE

10.3 ASIA PACIFIC

10.3.1 JAPAN

10.3.2 CHINA

10.3.3 SOUTH KOREA

10.3.4 INDIA

10.3.5 AUSTRALIA

10.3.6 SINGAPORE

10.3.7 THAILAND

10.3.8 MALAYSIA

10.3.9 INDONESIA

10.3.10 PHILIPPINES

10.3.11 REST OF ASIA PACIFIC

10.4 SOUTH AMERICA

10.4.1 BRAZIL

10.4.2 ARGENTINA

10.4.3 REST OF SOUTH AMERICA

10.5 MIDDLE EAST AND AFRICA

10.5.1 SOUTH AFRICA

10.5.2 EGYPT

10.5.3 SAUDI ARABIA

10.5.4 U.A.E

10.5.5 ISRAEL

10.5.6 REST OF MIDDLE EAST AND AFRICA

11 GLOBAL ARTIFICIAL INTELLIGENCE IN FINTECH MARKET,COMPANY LANDSCAPE

11.1 COMPANY SHARE ANALYSIS: GLOBAL

11.2 COMPANY SHARE ANALYSIS: NORTH AMERICA

11.3 COMPANY SHARE ANALYSIS: EUROPE

11.4 COMPANY SHARE ANALYSIS: ASIA-PACIFIC

11.5 MERGERS & ACQUISTIONS

11.6 NEW PRODUCT DEVELOPMENT AND APPROVALS

11.7 EXPANSIONS

11.8 REGULATORY CHANGES

11.9 PARTNERSHIP AND OTHER STRATEGIC DEVELOPMENTS

12 GLOBAL ARTIFICIAL INTELLIGENCE IN FINTECH MARKET, SWOT AND DBMR ANALYSIS

13 GLOBAL ARTIFICIAL INTELLIGENCE IN FINTECH MARKET, COMPANY PROFILE

13.1 IBM

13.1.1 COMPANY SNAPSHOT

13.1.2 REVENUE ANALYSIS

13.1.3 GEOGRAPHIC PRESENCE

13.1.4 PRODUCT PORTFOLIO

13.1.5 RECENT DEVELOPMENTS

13.2 INTEL CORPORATION

13.2.1 COMPANY SNAPSHOT

13.2.2 REVENUE ANALYSIS

13.2.3 GEOGRAPHIC PRESENCE

13.2.4 PRODUCT PORTFOLIO

13.2.5 RECENT DEVELOPMENTS

13.3 IPSOFT INC

13.3.1 COMPANY SNAPSHOT

13.3.2 REVENUE ANALYSIS

13.3.3 GEOGRAPHIC PRESENCE

13.3.4 PRODUCT PORTFOLIO

13.3.5 RECENT DEVELOPMENTS

13.4 COMPLY ADVANTAGE

13.4.1 COMPANY SNAPSHOT

13.4.2 REVENUE ANALYSIS

13.4.3 GEOGRAPHIC PRESENCE

13.4.4 PRODUCT PORTFOLIO

13.4.5 RECENT DEVELOPMENTS

13.5 SAMSUNG

13.5.1 COMPANY SNAPSHOT

13.5.2 REVENUE ANALYSIS

13.5.3 GEOGRAPHIC PRESENCE

13.5.4 PRODUCT PORTFOLIO

13.5.5 RECENT DEVELOPMENTS

13.6 NARRATIVE SCIENCE

13.6.1 COMPANY SNAPSHOT

13.6.2 REVENUE ANALYSIS

13.6.3 GEOGRAPHIC PRESENCE

13.6.4 PRODUCT PORTFOLIO

13.6.5 RECENT DEVELOPMENTS

13.7 MICROSOFT

13.7.1 COMPANY SNAPSHOT

13.7.2 REVENUE ANALYSIS

13.7.3 GEOGRAPHIC PRESENCE

13.7.4 PRODUCT PORTFOLIO

13.7.5 RECENT DEVELOPMENTS

13.8 AMAZON WEB SERVICES

13.8.1 COMPANY SNAPSHOT

13.8.2 REVENUE ANALYSIS

13.8.3 GEOGRAPHIC PRESENCE

13.8.4 PRODUCT PORTFOLIO

13.8.5 RECENT DEVELOPMENTS

13.9 NUANCE COMMUNICATIONS

13.9.1 COMPANY SNAPSHOT

13.9.2 REVENUE ANALYSIS

13.9.3 GEOGRAPHIC PRESENCE

13.9.4 PRODUCT PORTFOLIO

13.9.5 RECENT DEVELOPMENTS

13.1 GOOGLE

13.10.1 COMPANY SNAPSHOT

13.10.2 REVENUE ANALYSIS

13.10.3 GEOGRAPHIC PRESENCE

13.10.4 PRODUCT PORTFOLIO

13.10.5 RECENT DEVELOPMENTS

13.11 INBENTA TECHNOLOGIES

13.11.1 COMPANY SNAPSHOT

13.11.2 REVENUE ANALYSIS

13.11.3 GEOGRAPHIC PRESENCE

13.11.4 PRODUCT PORTFOLIO

13.11.5 RECENT DEVELOPMENTS

13.12 SALESFORCE.COM

13.12.1 COMPANY SNAPSHOT

13.12.2 REVENUE ANALYSIS

13.12.3 GEOGRAPHIC PRESENCE

13.12.4 PRODUCT PORTFOLIO

13.12.5 RECENT DEVELOPMENTS

13.13 NEXT IT CORP.

13.13.1 COMPANY SNAPSHOT

13.13.2 REVENUE ANALYSIS

13.13.3 GEOGRAPHIC PRESENCE

13.13.4 PRODUCT PORTFOLIO

13.13.5 RECENT DEVELOPMENTS

13.14 ONFIDO

13.14.1 COMPANY SNAPSHOT

13.14.2 REVENUE ANALYSIS

13.14.3 GEOGRAPHIC PRESENCE

13.14.4 PRODUCT PORTFOLIO

13.14.5 RECENT DEVELOPMENTS

13.15 RIPPLE LABS INC.

13.15.1 COMPANY SNAPSHOT

13.15.2 REVENUE ANALYSIS

13.15.3 GEOGRAPHIC PRESENCE

13.15.4 PRODUCT PORTFOLIO

13.15.5 RECENT DEVELOPMENTS

13.16 ACTIVE.AI

13.16.1 COMPANY SNAPSHOT

13.16.2 REVENUE ANALYSIS

13.16.3 GEOGRAPHIC PRESENCE

13.16.4 PRODUCT PORTFOLIO

13.16.5 RECENT DEVELOPMENTS

13.17 TIBCO SOFTWARE (ALPINE DATA LABS)

13.17.1 COMPANY SNAPSHOT

13.17.2 REVENUE ANALYSIS

13.17.3 GEOGRAPHIC PRESENCE

13.17.4 PRODUCT PORTFOLIO

13.17.5 RECENT DEVELOPMENTS

13.18 TRIFACTA SOFTWARE INC.

13.18.1 COMPANY SNAPSHOT

13.18.2 REVENUE ANALYSIS

13.18.3 GEOGRAPHIC PRESENCE

13.18.4 PRODUCT PORTFOLIO

13.18.5 RECENT DEVELOPMENTS

13.19 DATA MINR INC.

13.19.1 COMPANY SNAPSHOT

13.19.2 REVENUE ANALYSIS

13.19.3 GEOGRAPHIC PRESENCE

13.19.4 PRODUCT PORTFOLIO

13.19.5 RECENT DEVELOPMENTS

13.2 ZEITGOLD GMBH

13.20.1 COMPANY SNAPSHOT

13.20.2 REVENUE ANALYSIS

13.20.3 GEOGRAPHIC PRESENCE

13.20.4 PRODUCT PORTFOLIO

13.20.5 RECENT DEVELOPMENTS

13.21 SIFT SCIENCE INC.

13.21.1 COMPANY SNAPSHOT

13.21.2 REVENUE ANALYSIS

13.21.3 GEOGRAPHIC PRESENCE

13.21.4 PRODUCT PORTFOLIO

13.21.5 RECENT DEVELOPMENTS

13.22 PEFIN HOLDINGS LLC

13.22.1 COMPANY SNAPSHOT

13.22.2 REVENUE ANALYSIS

13.22.3 GEOGRAPHIC PRESENCE

13.22.4 PRODUCT PORTFOLIO

13.22.5 RECENT DEVELOPMENTS

13.23 BETTERMENT HOLDINGS

13.23.1 COMPANY SNAPSHOT

13.23.2 REVENUE ANALYSIS

13.23.3 GEOGRAPHIC PRESENCE

13.23.4 PRODUCT PORTFOLIO

13.23.5 RECENT DEVELOPMENTS

13.24 WEALTHFRONT INC.

13.24.1 COMPANY SNAPSHOT

13.24.2 REVENUE ANALYSIS

13.24.3 GEOGRAPHIC PRESENCE

13.24.4 PRODUCT PORTFOLIO

13.24.5 RECENT DEVELOPMENTS

13.25 SENTIFI AG

13.25.1 COMPANY SNAPSHOT

13.25.2 REVENUE ANALYSIS

13.25.3 GEOGRAPHIC PRESENCE

13.25.4 PRODUCT PORTFOLIO

13.25.5 RECENT DEVELOPMENTS

13.26 AYASDI

13.26.1 COMPANY SNAPSHOT

13.26.2 REVENUE ANALYSIS

13.26.3 GEOGRAPHIC PRESENCE

13.26.4 PRODUCT PORTFOLIO

13.26.5 RECENT DEVELOPMENTS

13.27 BRIGHTERION

13.27.1 COMPANY SNAPSHOT

13.27.2 REVENUE ANALYSIS

13.27.3 GEOGRAPHIC PRESENCE

13.27.4 PRODUCT PORTFOLIO

13.27.5 RECENT DEVELOPMENTS

13.28 APPZEN

13.28.1 COMPANY SNAPSHOT

13.28.2 REVENUE ANALYSIS

13.28.3 GEOGRAPHIC PRESENCE

13.28.4 PRODUCT PORTFOLIO

13.28.5 RECENT DEVELOPMENTS

13.29 NEXT IT

13.29.1 COMPANY SNAPSHOT

13.29.2 REVENUE ANALYSIS

13.29.3 GEOGRAPHIC PRESENCE

13.29.4 PRODUCT PORTFOLIO

13.29.5 RECENT DEVELOPMENTS

13.3 AIDA TECHNOLOGIES

13.30.1 COMPANY SNAPSHOT

13.30.2 REVENUE ANALYSIS

13.30.3 GEOGRAPHIC PRESENCE

13.30.4 PRODUCT PORTFOLIO

13.30.5 RECENT DEVELOPMENTS

14 CONCLUSION

15 QUESTIONNAIRE

16 RELATED REPORTS

17 ABOUT DATA BRIDGE MARKET RESEARCH

查看详细信息 Right Arrow

研究方法

数据收集和基准年分析是使用具有大样本量的数据收集模块完成的。该阶段包括通过各种来源和策略获取市场信息或相关数据。它包括提前检查和规划从过去获得的所有数据。它同样包括检查不同信息源中出现的信息不一致。使用市场统计和连贯模型分析和估计市场数据。此外,市场份额分析和关键趋势分析是市场报告中的主要成功因素。要了解更多信息,请请求分析师致电或下拉您的询问。

DBMR 研究团队使用的关键研究方法是数据三角测量,其中包括数据挖掘、数据变量对市场影响的分析和主要(行业专家)验证。数据模型包括供应商定位网格、市场时间线分析、市场概览和指南、公司定位网格、专利分析、定价分析、公司市场份额分析、测量标准、全球与区域和供应商份额分析。要了解有关研究方法的更多信息,请向我们的行业专家咨询。

可定制

Data Bridge Market Research 是高级形成性研究领域的领导者。我们为向现有和新客户提供符合其目标的数据和分析而感到自豪。报告可定制,包括目标品牌的价格趋势分析、了解其他国家的市场(索取国家列表)、临床试验结果数据、文献综述、翻新市场和产品基础分析。目标竞争对手的市场分析可以从基于技术的分析到市场组合策略进行分析。我们可以按照您所需的格式和数据样式添加您需要的任意数量的竞争对手数据。我们的分析师团队还可以为您提供原始 Excel 文件数据透视表(事实手册)中的数据,或者可以帮助您根据报告中的数据集创建演示文稿。

Frequently Asked Questions

市场是基于 全球金融科技市場人工智慧,按組件(解決方案和服務)、部署模式(雲端和本地)、應用程式(虛擬助理、業務分析和報告、客戶行為分析等)劃分——行業趨勢和預測到 2029 年。 进行细分的。
在2021年,全球金融科技市場的规模估计为13.14 USD Billion美元。
全球金融科技市場预计将在2022年至2029年的预测期内以CAGR 66.2%的速度增长。
市场上的主要参与者包括BigMLInc. , Cisco SystemsInc. , FICO , Hewlett Packard Enterprise Development LP , RapidMinerInc. , SAP SE , SAS Institute Inc. , Microsoft , GoogleLLC , Salesforce.com Inc. , IBM , Intel Corporation , Amazon Web ServicesInc. , Inbenta Technologies , IPsoft , Nuance Communications , and ComplyAdvantage 。
Testimonial