Global Ai In Respiratory Diseases Market
市场规模(十亿美元)
CAGR :
%
USD
9.10 Billion
USD
83.37 Billion
2024
2032
| 2025 –2032 | |
| USD 9.10 Billion | |
| USD 83.37 Billion | |
|
|
|
|
全球呼吸系統疾病人工智慧市場細分,按適應症(慢性阻塞性肺病、間質性肺病和肺部感染)、影像類型(MRI、CT 掃描和 ePRO)、最終用途(醫院、診斷中心、門診手術中心等)—行業趨勢和 2032 年預測
呼吸系統疾病人工智慧市場規模
- 2024 年全球呼吸道疾病人工智慧市場規模為91 億美元 ,預計 到 2032 年將達到 833.7 億美元,預測期內 複合年增長率為 31.90%。
- 市場成長主要得益於慢性阻塞性肺病、氣喘和肺部感染等呼吸系統疾病的日益流行,以及對早期發現、準確診斷和人工智慧驅動的個人化治療計劃的需求
- 此外,對高效臨床決策支援工具的需求不斷增長,人工智慧在影像和預測分析中的整合,以及數位醫療技術在呼吸護理領域的日益普及,正在使人工智慧成為肺科醫學領域的變革力量。這些融合因素正在加速人工智慧在呼吸疾病管理中的整合,從而顯著促進該行業的成長。
呼吸系統疾病人工智慧市場分析
- 呼吸系統疾病中的人工智慧,包括用於成像、診斷和臨床決策支援的先進工具,由於其能夠提高診斷精度、預測疾病進展和支持個人化治療策略,正在成為醫院、診斷中心和研究機構現代呼吸護理的重要組成部分
- 該領域對人工智慧的需求不斷增長,主要原因是全球慢性阻塞性肺病和肺部感染等慢性呼吸系統疾病負擔的增加、對早期和準確檢測的需求不斷增長,以及人工智慧在醫學成像和數位健康平台中的整合程度不斷提高
- 北美在呼吸系統疾病人工智慧市場佔據主導地位,2024 年的收入份額最高,為 45.1%,這歸功於其先進的醫療基礎設施、數位醫療技術的廣泛使用以及對人工智慧研究的強勁投資,尤其是在美國,醫療保健提供者越來越多地採用人工智慧驅動的成像工具和預測模型
- 預計亞太地區將成為預測期內成長最快的地區,這得益於醫療保健服務的改善、醫療保健支出的增加以及政府對臨床環境中人工智慧整合的支持
- CT 掃描領域在呼吸系統疾病人工智慧市場中佔據主導地位,2024 年的市場份額為 31.6%,這得益於其在檢測和監測呼吸系統疾病方面的核心作用,以及整合人工智慧演算法用於影像分析、疾病量化和診斷支持
報告範圍和呼吸系統疾病市場細分中的人工智慧
|
屬性 |
呼吸系統疾病領域人工智慧關鍵市場洞察 |
|
涵蓋的領域 |
|
|
覆蓋國家 |
北美洲
歐洲
亞太
中東和非洲
南美洲
|
|
主要市場參與者 |
|
|
市場機會 |
|
|
加值資料資訊集 |
除了對市場價值、成長率、細分、地理覆蓋範圍和主要參與者等市場情景的洞察之外,Data Bridge Market Research 策劃的市場報告還包括深入的專家分析、定價分析、品牌份額分析、消費者調查、人口統計分析、供應鏈分析、價值鏈分析、原材料/消耗品概述、供應商選擇標準、PESTLE 分析、波特分析和監管框架。 |
呼吸系統疾病人工智慧市場趨勢
“透過人工智慧整合增強診斷和決策支援”
- 全球呼吸系統疾病人工智慧市場的一個重要且快速發展的趨勢是,人工智慧正日益融入診斷影像、臨床決策支援和病患監測工具中。這項發展正在徹底改變肺部護理,使其能夠更早發現、提高診斷準確性並制定個人化治療方案。
- 例如,Zebra Medical Vision 和 Aidoc 等公司開發的 AI 增強型 CT 和 X 光分析平台能夠自動檢測結節、纖維化和發炎等異常情況(通常在症狀出現之前),從而實現更主動的疾病管理
- 人工智慧也被用於即時預測患者病情惡化。 Tempus 和 Qure.ai 等公司的解決方案利用機器學習分析呼吸資料和影像中的模式,以指導臨床醫生的介入。在電子病患報告結果 (ePRO) 平台中,人工智慧演算法用於監測病患輸入,並標記慢性阻塞性肺病 (COPD) 和間質性肺病 (ILD) 等疾病中潛在的病情惡化或併發症。
- 此外,人工智慧與醫院資訊系統和遠距醫療平台的整合,使臨床醫生能夠獲得影像、肺功能測試和預測見解的綜合視圖,從而簡化工作流程並增強決策能力
- 隨著人工智慧工具與現有放射科和電子病歷 (EMR) 系統的互通性不斷增強,其在城鄉醫療環境中的應用正在加速。 GE 醫療和西門子醫療等公司正在開發基於人工智慧的呼吸診斷系統,並提供基於雲端的部署選項,從而擴大跨地域的可及性。
- 這種智慧、預測性和整合化呼吸照護系統的趨勢正在重塑臨床肺病學的預期。因此,醫療保健和科技領域的利益相關者正在大力投資基於人工智慧的解決方案,以支持各種呼吸系統疾病的早期幹預和改善患者預後。
呼吸系統疾病人工智慧市場動態
司機
「呼吸系統疾病負擔不斷增加,需要早期、準確的診斷”
- 在全球範圍內,慢性阻塞性肺病 (COPD)、間質性肺病 (ILD) 和肺部感染等呼吸系統疾病的增多,是推動呼吸系統疾病人工智慧市場發展的主要因素。越來越多的人開始使用人工智慧工具來檢測和管理這些疾病,這些工具可以增強影像解讀能力,識別細微模式,並減少診斷延誤。
- 例如,Qure.ai 於 2024 年推出了其基於人工智慧的胸部 X 光篩檢工具的升級版,該工具能夠檢測包括結核病和肺炎在內的 30 多種疾病,旨在改善資源匱乏地區的診斷。此類創新正在擴大醫療資源匱乏者獲得優質診斷服務的機會。
- 高效臨床決策的需求日益增長,尤其是在放射科醫生和肺科醫生短缺的情況下,這也推動了對基於人工智慧的呼吸工具的需求。這些系統有助於縮短診斷時間,最大限度地減少診斷錯誤,並透過數據支援的洞察指導治療。
- 此外,在新冠疫情期間和之後,遠距醫療和數位健康平台的興起加速了人工智慧在遠距呼吸監測中的應用,從而可以持續評估患者的症狀、肺功能和病情進展
- 人工智慧能夠處理結合影像、病史和生物標記的多模態數據,從而進行全面評估,支持臨床醫生製定個人化治療方案並追蹤療效。這種整體方法在個人化呼吸醫學中越來越受到重視,尤其是在慢性阻塞性肺病和氣喘等高負擔疾病中。
克制/挑戰
“資料隱私問題和監管障礙”
- 儘管人工智慧有許多優勢,但資料隱私問題和監管合規障礙等挑戰仍對呼吸照護領域的應用構成重大限制。人工智慧系統需要存取大量患者資料——影像、臨床記錄和生物訊號——這引發了有關保密性、知情同意和資料所有權的問題。
- 例如,醫療機構必須遵守嚴格的資料保護法規,例如美國的《健康保險流通與責任法》和歐盟的《通用資料保護條例》,這使得跨境或在多機構網路內整合人工智慧解決方案變得複雜
- 此外,基於人工智慧的醫療器材的監管審批流程仍然冗長複雜,許多國家缺乏清晰統一的框架。這可能會延遲上市時間,並限制實際應用,尤其對於新創公司和小型開發人員而言。
- 另一個挑戰在於用於開發人工智慧模型的訓練資料集的變異性和偏差。數據多樣性不足可能會導致應用於不同人群時的準確性降低,從而造成誤診的風險。
- 克服這些障礙需要更強有力的人工智慧驗證國際標準、更好的資料治理政策,以及監管機構、臨床醫生和技術開發商之間的持續合作,以確保合乎道德和公平的實施
呼吸系統疾病人工智慧市場範圍
市場根據適應症、成像類型和最終用途進行細分。
- 按適應症
根據適應症,呼吸系統疾病人工智慧市場細分為慢性阻塞性肺病 (COPD)、間質性肺病 (ILD) 和肺部感染。慢性阻塞性肺病 (COPD) 領域佔據主導地位,在 2024 年佔據最大的市場收入份額,這得益於該疾病全球患病率的上升以及人工智慧工具在早期診斷、風險分層和病情進展監測中的應用日益增多。 COPD 護理中的人工智慧系統透過提供預測分析、個人化治療建議和增強的影像學解讀來支持臨床醫生。
由於診斷的複雜性以及對高解析度成像解決方案的需求不斷增長,預計間質性肺病 (ILD) 領域將在 2025 年至 2032 年間實現最快的增長。人工智慧能夠區分 ILD 亞型並量化纖維化,這使其在提高診斷準確性和患者預後方面尤其重要。
- 按成像類型
根據影像類型,呼吸系統疾病人工智慧市場細分為 CT 掃描、MRI 和 ePRO(電子病患報告結果)。 CT 掃描領域在 2024 年佔據了最大的市場收入份額,達到 31.6%,這得益於其在檢測肺部異常方面的廣泛應用,以及與 AI 演算法在影像分析和疾病量化方面的無縫整合。 CT 影像仍然是評估肺部疾病的黃金標準,而 AI 透過自動化診斷結果和縮短解讀時間,進一步提升了 CT 影像的實用性。
預計 2025 年至 2032 年間,ePRO 領域將實現最快的成長速度,這得益於遠端監控平台和人工智慧分析技術的日益普及,這些技術可以將患者報告的數據轉化為即時臨床洞察。 ePRO 平台越來越多地應用於慢性病管理,可以早期發現症狀惡化並提高患者參與度。
- 按最終用途
根據最終用途,呼吸系統疾病人工智慧市場可細分為醫院、診斷中心、門診手術中心和其他。醫院領域佔據市場主導地位,2024 年市場收入份額最高,達到 64.8%,這得益於其擁有先進的診斷基礎設施、龐大的患者數量以及基於人工智慧的影像和決策支援系統日益普及。醫院是人工智慧在即時呼吸監測、整合臨床工作流程和提高診斷準確性方面的領先應用者。
由於對人工智慧工具支援的高效且經濟的影像服務的需求不斷增長,診斷中心細分市場預計將在預測期內穩步增長。這些中心受益於人工智慧的自動化解讀能力,尤其是在高容量環境下,可以縮短週轉時間。
呼吸系統疾病人工智慧市場區域分析
- 北美在呼吸系統疾病人工智慧市場佔據主導地位,2024 年的收入份額最高,為 45.1%,這歸功於其先進的醫療基礎設施、數位醫療技術的廣泛使用以及對人工智慧研究的大力投資
- 該地區的領導地位得到了人工智慧研究的大力投資、數位健康平台的廣泛整合以及臨床環境中對人工智慧驅動的成像和決策支援工具的日益依賴的進一步支持
- 美國在這方面處於領先地位,因為它擁有龐大的人工智慧醫療科技公司基礎、對人工智慧診斷的積極監管支持,以及對早期數據驅動的呼吸系統疾病管理的日益重視,鞏固了北美作為呼吸護理人工智慧主導市場的地位
美國呼吸系統疾病人工智慧市場洞察
2024年,美國呼吸系統疾病人工智慧市場佔據北美地區最高收入份額,達78.3%,這得益於人工智慧在醫療保健領域的早期應用、強大的數位基礎設施以及慢性呼吸系統疾病負擔的不斷加重。人工智慧演算法與診斷影像、病患監護和電子健康記錄的整合,顯著改善了臨床療效。此外,支持性監管框架和對人工智慧驅動的醫療保健創新的資金投入不斷增加,進一步推動了美國市場的發展,使其成為先進呼吸診斷和管理解決方案的中心。
歐洲呼吸系統疾病人工智慧市場洞察
預計歐洲呼吸系統疾病人工智慧市場在整個預測期內將以顯著的複合年增長率擴張,這得益於政府對人工智慧技術的支持力度不斷加大,以及對精準醫療的日益重視。該地區的醫院和診斷中心正在加速採用人工智慧工具,以加強肺部疾病的早期發現和治療。德國、法國和英國等國家正大力投資數位健康項目,以支持人工智慧在放射學和肺部診斷領域的整合。
英國呼吸系統疾病人工智慧市場洞察
英國呼吸系統疾病人工智慧市場預計將在預測期內實現顯著的複合年增長率,這得益於國家策略——利用人工智慧促進醫療保健發展,以及英國國家醫療服務體系 (NHS) 的數位轉型目標。英國致力於透過早期診斷和數據驅動的護理來降低呼吸系統疾病的發生率,這推動了人工智慧工具的普及。此外,醫療科技新創公司與研究機構之間日益增多的合作,也支持了基於人工智慧的呼吸系統解決方案的開發,以滿足當地醫療保健需求。
德國呼吸系統疾病人工智慧市場洞察
受數位醫療領域強勁投資和先進診斷工具需求不斷增長的推動,德國呼吸系統疾病人工智慧市場預計將在預測期內實現顯著的複合年增長率。德國致力於將人工智慧融入醫院工作流程,其完善的監管環境也為基於人工智慧的呼吸分析系統的應用提供了支援。此外,人們對肺部疾病的認識不斷提高,以及對高效自動化診斷模型的追求,也正在推動市場發展。
亞太地區呼吸道疾病人工智慧市場洞察
在2025年至2032年的預測期內,亞太地區呼吸系統疾病人工智慧市場預計將以25.6%的複合年增長率保持高速增長,這得益於醫療數位化的不斷推進、呼吸系統疾病人工智慧市場預計的增加以及中國、日本和印度等國的技術進步。各地區政府正強調將人工智慧融入醫療保健服務,以提高診斷準確性和病患治療效果。人工智慧平台的可負擔性和日益增多的研究合作夥伴關係也促進了其廣泛應用。
日本呼吸系統疾病人工智慧市場洞察
日本呼吸系統疾病人工智慧市場正蓬勃發展,得益於其雄厚的技術基礎、人口老化以及慢性肺部疾病的高發生率。醫院和診斷中心越來越多地部署人工智慧影像工具和預測分析技術,以管理和監測呼吸系統疾病。政府致力於人工智慧驅動的醫療創新,遠距醫療服務的興起也為市場成長提供了支撐。
印度呼吸系統疾病人工智慧市場洞察
2024年,印度呼吸系統疾病人工智慧市場佔據亞太地區最大市場份額,這得益於數位醫療新創企業數量的激增、呼吸系統疾病負擔的增加以及政府在公共醫療領域推廣人工智慧的舉措。印度快速發展的醫療基礎設施,加上低成本、可擴展的篩檢解決方案中人工智慧的應用,正在提升城鄉人口的早期診斷水準。人工智慧公司與醫療服務提供者之間的策略合作正在進一步加速市場滲透。
呼吸系統疾病人工智慧市場份額
呼吸系統疾病人工智慧產業主要由知名公司主導,包括:
- GE醫療(美國)
- 西門子醫療股份公司(德國)
- Koninklijke Philips NV(荷蘭)
- Aidoc Medical Ltd.(以色列)
- Zebra Medical Vision Ltd.(以色列)
- Qure.ai Technologies Pvt. Ltd.(印度)
- 富士軟片控股株式會社(日本)
- 佳能醫療系統株式會社(日本)
- 拜耳公司(德國)
- RadNet, Inc.(美國)
- Enlitic, Inc.(美國)
- NVIDIA公司(美國)
- Lunit Inc.(韓國)
- HeartVista, Inc.(美國)
- 推想醫療科技股份有限公司 (中國)
- VUNO公司(韓國)
- iCAD, Inc.(美國)
- Perspectum Ltd.(英國)
- Arterys Inc.(美國)
全球呼吸系統疾病人工智慧市場的最新發展是什麼?
- 2023年4月,GE醫療科技公司推出了升級版AI胸腔護理套件,旨在幫助臨床醫生檢測和管理肺部疾病,包括肺炎和慢性阻塞性肺病(COPD)。該解決方案整合於X射線成像系統,利用先進的演算法快速識別關鍵發現,從而提高診斷準確性和工作流程效率。這項創新彰顯了GE醫療致力於透過AI驅動的放射學工具革新呼吸診斷的決心。
- 2023年3月,西門子醫療與歐洲呼吸學會 (ERS) 合作,試行基於人工智慧的呼吸篩檢平台,該平台整合了影像、肺量計和患者報告數據。該平台旨在利用預測分析技術,改善間質性肺部疾病 (ILD) 的早期發現和監測。這項進展凸顯了西門子致力於為歐洲各地的慢性呼吸系統疾病患者提供量身定制的跨學科人工智慧解決方案的戰略重點。
- 2023年3月,Zebra Medical Vision(現為Nanox旗下公司)在日本獲得了其AI驅動的肺部影像演算法的監管批准。該軟體透過自動識別胸部CT掃描中的肺氣腫和其他肺部異常徵兆,協助放射科醫師進行診斷。這一里程碑反映了AI在亞洲地區診斷影像領域的日益普及,有助於更快、更準確地評估呼吸系統疾病。
- 2023年2月,Qure.ai宣布將其AI演算法qXR與印度政府主導的肺部健康計畫下部署在農村醫療中心的便攜式X射線設備整合。此AI模型使第一線醫護人員能夠即時檢測結核病和其他呼吸系統疾病的跡象,從而促進早期介入。這項進展彰顯了Qure.ai致力於透過可擴展的AI解決方案,改善醫療資源匱乏地區的呼吸系統照護的可近性和療效。
- 2023年1月,領先的人工智慧放射學公司Aidoc推出了一套全新的基於人工智慧的急診分診工具,專門用於識別急性肺栓塞和其他危重肺部疾病。透過向臨床醫生提供即時警報和決策支持,Aidoc旨在減少診斷延遲,並改善高壓環境下的患者預後。此次發布進一步強化了人工智慧在增強急診呼吸診斷和簡化臨床工作流程方面的作用。
SKU-
Get online access to the report on the World's First Market Intelligence Cloud
- Interactive Data Analysis Dashboard
- Company Analysis Dashboard for high growth potential opportunities
- Research Analyst Access for customization & queries
- Competitor Analysis with Interactive dashboard
- Latest News, Updates & Trend analysis
- Harness the Power of Benchmark Analysis for Comprehensive Competitor Tracking
研究方法
数据收集和基准年分析是使用具有大样本量的数据收集模块完成的。该阶段包括通过各种来源和策略获取市场信息或相关数据。它包括提前检查和规划从过去获得的所有数据。它同样包括检查不同信息源中出现的信息不一致。使用市场统计和连贯模型分析和估计市场数据。此外,市场份额分析和关键趋势分析是市场报告中的主要成功因素。要了解更多信息,请请求分析师致电或下拉您的询问。
DBMR 研究团队使用的关键研究方法是数据三角测量,其中包括数据挖掘、数据变量对市场影响的分析和主要(行业专家)验证。数据模型包括供应商定位网格、市场时间线分析、市场概览和指南、公司定位网格、专利分析、定价分析、公司市场份额分析、测量标准、全球与区域和供应商份额分析。要了解有关研究方法的更多信息,请向我们的行业专家咨询。
可定制
Data Bridge Market Research 是高级形成性研究领域的领导者。我们为向现有和新客户提供符合其目标的数据和分析而感到自豪。报告可定制,包括目标品牌的价格趋势分析、了解其他国家的市场(索取国家列表)、临床试验结果数据、文献综述、翻新市场和产品基础分析。目标竞争对手的市场分析可以从基于技术的分析到市场组合策略进行分析。我们可以按照您所需的格式和数据样式添加您需要的任意数量的竞争对手数据。我们的分析师团队还可以为您提供原始 Excel 文件数据透视表(事实手册)中的数据,或者可以帮助您根据报告中的数据集创建演示文稿。

