Global Ai Training Dataset Market
市场规模(十亿美元)
CAGR :
%
USD
2.72 Billion
USD
16.00 Billion
2024
2032
| 2025 –2032 | |
| USD 2.72 Billion | |
| USD 16.00 Billion | |
|
|
|
|
全球人工智慧訓練資料集市場細分,按軟體(資料收集工具、資料註釋軟體和現成資料集)、類型(圖像/視訊、音訊和文字)、垂直行業(IT、汽車、政府、醫療保健、BFSI、零售和電子商務) - 行業趨勢和預測到 2032 年
人工智慧訓練資料集市場規模
- 2024 年全球人工智慧訓練資料集市場規模為27.2 億美元,預計到 2032 年將達到 160 億美元,預測期內 複合年增長率為 24.80%。
- 市場成長主要得益於醫療保健、汽車、零售和 BFSI 等領域越來越多地採用人工智慧和機器學習技術,這導致對高品質、帶註釋的訓練資料集的需求急劇上升,以提高模型的準確性和性能
- 此外,資料密集型應用(從電腦視覺和語音識別到 NLP 和預測分析)的激增,正在推動企業投資可擴展、特定領域的資料集,從而顯著促進 AI 訓練資料集行業的擴張
人工智慧訓練資料集市場分析
- AI 訓練資料集由結構化或註釋的資料組成,用於在監督學習和半監督學習環境中訓練機器學習模型。這些資料集可能包含圖像、音訊、視訊、文字或多模態輸入,對於訓練 AI 系統識別模式、進行預測並在最少人工幹預的情況下自動做出決策至關重要。
- 人工智慧發展的快速發展催生了對訓練資料的巨大需求,尤其是在開發用於診斷、詐欺檢測、自主導航和推薦引擎的智慧型系統的領域。因此,在數據標註服務、合成數據平台和人工智慧市場生態系統投資不斷增長的推動下,市場正在經歷強勁成長。
- 北美憑藉其強大的人工智慧生態系統、大量的研發投入以及大型科技公司和人工智慧新創公司的存在,在 2024 年佔據了人工智慧訓練資料集市場的主導地位,市場份額達到 36.3% 。
- 由於數位化轉型迅速、人工智慧用例不斷擴展,以及中國、日本、印度和韓國等經濟體政府對人工智慧發展的支持力度不斷加大,亞太地區預計將在預測期內成為人工智慧訓練資料集市場成長最快的地區
- 由於臉部身份驗證、自動駕駛、醫療診斷和零售監控等電腦視覺應用的爆炸性增長,影像/視訊領域在2024年佔據了41.5%的市場份額,佔據了主導地位。這些模型需要大量註釋的圖像和視訊幀來高精度地識別、分類和追蹤物體。無人機、機器人和智慧基礎設施中邊緣設備和嵌入式視覺的快速成長進一步刺激了對視覺資料集的需求。各組織也越來越多地利用合成影像和視訊資料集來補充現實世界數據,從而提高模型在不同環境條件下的穩健性。
報告範圍和人工智慧訓練資料集市場細分
|
屬性 |
人工智慧訓練資料集關鍵市場洞察 |
|
涵蓋的領域 |
|
|
覆蓋國家 |
北美洲
歐洲
亞太
中東和非洲
南美洲
|
|
主要市場參與者 |
|
|
市場機會 |
|
|
加值資料資訊集 |
除了市場價值、成長率、市場區隔、地理覆蓋範圍、市場參與者和市場情景等市場洞察之外,Data Bridge 市場研究團隊策劃的市場報告還包括深入的專家分析、進出口分析、定價分析、生產消費分析和 pestle 分析。 |
人工智慧訓練資料集市場趨勢
合成訓練資料的採用日益增多
- 隨著合成資料作為傳統資料註釋的可擴展、隱私合規替代方案日益受到關注,克服了與資料稀缺、偏見和敏感資訊外洩相關的限制,人工智慧訓練資料集市場正在快速發展
- 例如,NVIDIA 和 Mostly AI 等公司專注於合成資料生成平台,這些平台能夠創建高品質、標籤的資料集,用於訓練醫療、汽車和金融等行業的電腦視覺、自然語言處理和自主系統
- 合成資料的靈活性允許創建罕見事件場景或平衡資料集,從而減輕偏見並增強模型泛化能力
- 加強對個人資料使用的監管審查,鼓勵採用既能保護隱私又能保持分析效用的合成資料集
- 生成對抗網路 (GAN) 和模擬技術的進步促進了真實且多樣化的合成資料樣本,從而加速了人工智慧開發週期
- 合成資料集越來越多地與現實世界資料集結合,以優化訓練效果並降低機器學習模型中的過度擬合風險
人工智慧訓練資料集市場動態
司機
各行業對特定領域和多語言資料集的需求不斷增長
- 隨著人工智慧在醫療保健、汽車、零售和電信等垂直領域的應用不斷擴展,對精心策劃的特定領域和多語言資料集的需求正在增長,以支援語言、上下文和特定任務的模型訓練
- 例如,Appen 和 Lionbridge 提供跨語言和專業領域的大量註釋資料集,幫助企業開發適合當地市場和監管環境的客戶服務、醫療診斷和自動駕駛汽車領域的強大 AI 應用程式
- 日益增長的AI產品在地化和個人化需要高品質、情境相關的訓練數據,以提高準確性和用戶滿意度。行業法規合規性,尤其是在醫療和金融領域,要求領域感知資料管理,以確保AI模型符合法律和道德標準。
- 對話式人工智慧、情感分析和語言翻譯工具的日益普及,刺激了對多種語言和方言的多樣化文字、語音和圖像資料集的需求
- 人工智慧開發人員和資料註釋公司之間的策略合作夥伴關係促進了按需創建專用資料集,從而加快了人工智慧解決方案的上市時間
克制/挑戰
手動資料註釋成本高且耗時
- 手動註釋仍然是一個關鍵的瓶頸,因為它勞動密集、容易出錯、成本高昂,通常需要領域專家和漫長的驗證週期,從而減慢人工智慧模型的訓練和部署速度
- 例如,依賴手動標記複雜影像或視訊資料集的企業(例如自動駕駛開發人員或醫學影像公司)儘管品質要求嚴格,但仍面臨高昂的營運成本和可擴展性挑戰
- 招募和培訓具有領域專業知識的熟練註釋人員的困難加劇了專案之間的延遲和數據品質的差異
- 註釋不一致和品質控制問題導致返工和層層審核流程,這無疑增加了時間和成本。隨著人工智慧模型複雜性的提升,資料集規模不斷擴大,這加劇了註釋需求,進一步加劇了人力資源和預算的緊張。
- 業界正在積極探索半自動化和人工智慧輔助註釋工具,以降低成本和周轉時間,但模型可靠性和整合複雜性仍然對其廣泛採用構成挑戰
人工智慧訓練資料集市場範圍
市場根據軟體、類型和垂直進行細分。
- 按軟體
根據軟體類型,AI 訓練資料集市場可細分為資料收集工具、資料標註軟體和現成資料集。資料標註軟體在 2024 年佔據市場主導地位,這得益於其在產生高品質標註資料方面發揮的關鍵作用,而這些資料對於汽車、醫療保健和零售等領域的監督學習模型訓練至關重要。這些平台支援多種資料類型,包括圖像、文字、音訊和視頻,並且通常配備 AI 輔助標註功能,以加快標註流程。企業青睞這些工具,因為它們能夠處理大型資料集,支援分散式團隊之間的即時協作,並確保標註任務的一致性。它們與機器學習流程的廣泛整合以及與多種模型訓練框架的兼容性,進一步鞏固了它們的主導地位。
預計現成資料集領域將在2025年至2032年間經歷最快的複合年增長率,這得益於那些希望縮短AI解決方案上市時間的公司日益增長的需求。這些預先標記的資料集針對特定領域(例如臉部辨識、詐欺偵測或醫學影像)進行篩選,使AI團隊能夠跳過耗時的資料收集階段。新創公司和小型企業尤其受益於其價格實惠、速度快且品質保證的優勢。此外,隨著模型泛化成為關注的重點,現成資料集越來越受到基準測試和預訓練的需求,尤其是在遷移學習和基礎模型開發領域。
- 按類型
根據類型,AI訓練資料集市場可細分為圖像/視訊、音訊和文字。由於人臉辨識、自動駕駛、醫療診斷和零售監控等電腦視覺應用的爆炸性成長,影像/影片領域在2024年佔據了最大的份額,達到41.5%。這些模型需要大量註釋的圖像和視訊幀來高精度地識別、分類和追蹤物件。無人機、機器人和智慧基礎設施中邊緣設備和嵌入式視覺的快速成長進一步刺激了對視覺資料集的需求。各組織也越來越多地利用合成影像和視訊資料集來補充現實世界數據,從而提高模型在各種環境條件下的穩健性。
預計音訊領域將在2025年至2032年期間實現最高成長率,這得益於人工智慧在語音驅動應用(包括虛擬助理、呼叫中心自動化和多語言轉錄服務)的廣泛應用。包含語音、聲學事件和背景噪音上下文的註釋音訊資料集對於提高語音識別和聲音分類任務的準確性至關重要。隨著情感感知語音人工智慧和視障人士無障礙技術的研發投入不斷增加,音訊領域將進一步加速成長。隨著對區域語言和方言語音資料的需求不斷增長,資料集提供者正在擴展其產品範圍,以支援多樣化的語言和聲學特徵。
- 按垂直
人工智慧訓練資料集市場按垂直產業細分,可分為IT、汽車、政府、醫療保健、BFSI(商業、金融服務和保險)以及零售和電商。由於科技公司和雲端服務供應商大力投資於人工智慧訓練,以實現網路安全、自動化和客戶體驗提升,IT領域在2024年佔據了市場主導地位。這些組織通常開發內部數據集或採購大量結構化和非結構化數據,以支援模型開發、測試和持續學習。軟體創新和跨平台及服務的人工智慧整合的快速發展,推動了對多樣化、特定任務資料集的持續需求。此外,IT產業能夠使用先進的資料標記和處理工具,這使其在資料集利用方面保持領先地位。
預計醫療保健領域將在2025年至2032年間實現最快成長,這得益於人工智慧在疾病診斷、影像分析、機器人手術和病患管理系統中日益廣泛的應用。在該領域訓練人工智慧模型需要大量精心整理的資料集,例如核磁共振掃描、病理切片、基因組資料和臨床記錄,這些資料集必須遵守嚴格的監管和倫理標準。公私合作的興起,例如醫院與人工智慧公司合作進行數據驅動的創新,正在提升數據集的可近性。此外,個人化和預測性醫療保健的推動正在加速對縱向和多模態患者資料的需求,使醫療保健成為人工智慧訓練資料集的高成長垂直領域。
人工智慧訓練資料集市場區域分析
- 北美在人工智慧訓練資料集市場佔據主導地位,2024 年的收入份額最高,為 36.3%,這得益於該地區強大的人工智慧生態系統、大量的研發投資以及大型科技公司和人工智慧新創公司的存在
- 北美企業正大力投資醫療、金融、自動駕駛、網路安全等領域的人工智慧模型訓練,對多樣化、高品質訓練資料集的需求也隨之增加
- 該地區受益於先進的雲端基礎設施、較高的數位素養以及對人工智慧創新的有利監管支持,有助於各行業大規模採購和使用數據集
美國人工智慧訓練資料集市場洞察
2024年,美國人工智慧訓練資料集市場佔據了北美最大的收入份額,這得益於醫療保健、汽車和IT等產業對人工智慧的強勁應用。機器學習和自然語言處理應用的快速發展持續催生了對標記資料的需求,尤其是在圖像、語音和文字格式方面。科技巨頭和新創公司都在利用大量訓練資料來開發專有的人工智慧模型。公私合作、政府支持的研究以及以創新為重點的學術部門進一步加速了美國數據集生態系統的發展。
歐洲人工智慧訓練資料集市場洞察
受嚴格的資料隱私法規和日益增長的對人工智慧倫理發展的重視,歐洲人工智慧訓練資料集市場預計將在預測期內實現顯著的複合年增長率。自動化、人工智慧驅動的公共服務和智慧製造的興起,正在推動整個歐洲大陸對高品質資料集的需求。歐洲企業正強調使用可解釋且無偏見的資料集,以符合《一般資料保護規範》(GDPR) 的合規性和道德標準。在汽車、醫療保健和政府等精準訓練的人工智慧模型至關重要的領域,其應用尤其強勁。
英國人工智慧訓練資料集市場洞察
預計在預測期內,英國人工智慧訓練資料集市場將以顯著的複合年增長率成長,這得益於國家推動人工智慧領導力和數位轉型的舉措。隨著對人工智慧研究中心的投資,以及商業、金融服務和保險業(BFSI)和電子商務等行業對智慧自動化的需求不斷增長,對可靠、預標記資料集的需求也日益增長。英國蓬勃發展的新創企業生態系統和強大的人工智慧即服務供應商進一步增強了市場。對負責任的人工智慧和公平數據使用的重視,正在推動高品質、無偏見數據集的開發。
德國人工智慧訓練資料集市場洞察
預計德國人工智慧訓練資料集市場將穩步擴張,這得益於該國在工業自動化、智慧出行和醫療數位化領域的領先地位。德國企業越來越多地在預測性維護、自動駕駛汽車和醫療診斷等領域採用人工智慧,而這些領域都需要精確且特定領域的資料集。該市場受益於研究機構、企業和政府支持的人工智慧計畫之間的合作。德國對品質、資料保護和創新的重視,支撐了對安全、可擴展的訓練資料解決方案的需求。
亞太地區人工智慧訓練資料集市場洞察
預計在2025年至2032年的預測期內,亞太地區AI訓練資料集市場將以最快的複合年增長率成長,這得益於快速的數位轉型、不斷擴展的AI用例以及中國、日本、印度和韓國等經濟體政府對AI發展的支持力度的加大。網路設備、多語言人口和「行動優先」市場的激增,正在創造多樣化的數據需求。此外,亞太地區作為全球AI人才和經濟高效的數據標註服務中心,將進一步加速各垂直產業的資料集生產與消費。
日本人工智慧訓練資料集市場洞察
日本人工智慧訓練資料集市場正在穩步成長,這得益於該國對機器人技術、智慧城市和智慧交通系統的重視。日本高度先進的數位基礎設施和互聯設備的廣泛使用正在產生大量結構化和非結構化資料。企業正在積極利用人工智慧來應對勞動力短缺和人口老化挑戰,尤其是在醫療保健和物流領域。隨著人工智慧在消費性電子產品和公共服務領域的應用不斷擴展,對多模態和特定語言資料集的需求也不斷增長。
中國人工智慧訓練資料集市場洞察
2024年,中國人工智慧訓練資料集市場佔據亞太地區最大收入份額,這得益於中國「人工智慧優先」發展策略、大規模數位轉型以及在智慧型裝置領域的主導地位。人臉辨識、監控和電商領域人工智慧系統的廣泛部署,催生了對標註資料集的巨大需求。政府支持的計劃和本土人工智慧公司的崛起,為數據生成、標註和分發構建了一個強大的生態系統。中國蓬勃發展的智慧城市和自動駕駛汽車項目,持續為數據集提供者創造巨大的機會。
人工智慧訓練資料集市場份額
人工智慧訓練資料集產業主要由知名公司主導,包括:
- Scale AI(美國)
- Appen(澳洲)
- Lionbridge(美國)
- AWS(美國)
- 薩瑪(美國)
- Clickworker(英國)
- Cogito Tech(美國)
- CloudFactory(英國)
- TELUS International(加拿大)
- Innodata(美國)
- iMerit(美國)
- TransPerfect(美國)
- Google(美國)
- LXT(加拿大)
- IBM(美國)
- 微軟(美國)
- NVIDIA(美國)
全球人工智慧訓練資料集市場的最新發展
- 2024年9月,Innodata推出了其AI資料市場,標誌著其在解決AI/ML模型訓練中資料可擴展性和可訪問性挑戰方面邁出了重要一步。該平台提供精選的按需合成文件資料集,幫助資料科學團隊克服資料量、多樣性和隱私方面的限制。透過簡化對即用型資料集的訪問,該市場有望加速AI模型開發,並滿足各行各業對合成和特定領域訓練資料日益增長的需求。
- 2024年9月,SCALE AI宣佈在「泛加拿大人工智慧戰略」框架下,向加拿大九個AI驅動的醫療保健計畫投資2,100萬美元。該計劃旨在促進醫院與AI開發者之間的合作,從而顯著影響醫療保健領域的AI訓練資料集市場。它旨在改善患者護理,減少候診時間,並優化醫療保健運營,從而增加對用於臨床、行政和診斷應用的高品質、符合倫理道德的數據集的需求。
- 2024 年 8 月,Lionbridge Technologies, Inc. 推出了 Aurora AI Studio,這是一個專注於幫助企業利用高品質資料集訓練 AI 模型的專用平台。此次發布旨在滿足企業對專業化、註釋完善的資料日益增長的需求,以支援進階 AI 用例。該平台依托 Lionbridge 在資料管理和註釋方面的全球專業知識,增強了商業 AI 生態系統,並有望影響金融、零售和電信等行業對客製化、多語言和行業特定資料集的需求。
- 2024年8月,埃森哲與Google雲端合作,透過其生成式人工智慧卓越中心加速了生成式人工智慧解決方案的部署。目前,45%的專案已轉入生產環境,此次合作凸顯了人工智慧規模化營運的日益增長。這凸顯了企業迫切需要安全、多樣化且可立即投入生產的訓練資料集,以支援其先進的人工智慧模型。該計劃還整合了網路安全,強化了負責任的資料處理和注重隱私的資料集在企業人工智慧應用中所發揮的作用。
- 2024年7月,微軟研究院發布了AgentInstruct,這是一個多智能體工作流程框架,旨在自動產生高品質的合成數據。該框架已透過其Orca-3模型在多個基準測試中的改進得到驗證,最大限度地減少了數據標記過程中的人為幹預,從而降低了成本並加速了數據集的創建。 AgentInstruct有望透過推動合成資料在大規模模型訓練中的應用,特別是在生成式AI和基礎模型中,重塑AI訓練資料集市場。
SKU-
Get online access to the report on the World's First Market Intelligence Cloud
- Interactive Data Analysis Dashboard
- Company Analysis Dashboard for high growth potential opportunities
- Research Analyst Access for customization & queries
- Competitor Analysis with Interactive dashboard
- Latest News, Updates & Trend analysis
- Harness the Power of Benchmark Analysis for Comprehensive Competitor Tracking
研究方法
数据收集和基准年分析是使用具有大样本量的数据收集模块完成的。该阶段包括通过各种来源和策略获取市场信息或相关数据。它包括提前检查和规划从过去获得的所有数据。它同样包括检查不同信息源中出现的信息不一致。使用市场统计和连贯模型分析和估计市场数据。此外,市场份额分析和关键趋势分析是市场报告中的主要成功因素。要了解更多信息,请请求分析师致电或下拉您的询问。
DBMR 研究团队使用的关键研究方法是数据三角测量,其中包括数据挖掘、数据变量对市场影响的分析和主要(行业专家)验证。数据模型包括供应商定位网格、市场时间线分析、市场概览和指南、公司定位网格、专利分析、定价分析、公司市场份额分析、测量标准、全球与区域和供应商份额分析。要了解有关研究方法的更多信息,请向我们的行业专家咨询。
可定制
Data Bridge Market Research 是高级形成性研究领域的领导者。我们为向现有和新客户提供符合其目标的数据和分析而感到自豪。报告可定制,包括目标品牌的价格趋势分析、了解其他国家的市场(索取国家列表)、临床试验结果数据、文献综述、翻新市场和产品基础分析。目标竞争对手的市场分析可以从基于技术的分析到市场组合策略进行分析。我们可以按照您所需的格式和数据样式添加您需要的任意数量的竞争对手数据。我们的分析师团队还可以为您提供原始 Excel 文件数据透视表(事实手册)中的数据,或者可以帮助您根据报告中的数据集创建演示文稿。

