Global Artificial Intelligence Ai Chipset Market
市场规模(十亿美元)
CAGR :
%
USD
73.24 Billion
USD
558.18 Billion
2024
2032
| 2025 –2032 | |
| USD 73.24 Billion | |
| USD 558.18 Billion | |
|
|
|
|
全球語言處理、上下文感知計算、電腦視覺和預測分析)、功能(訓練和推理)、最終用戶(消費電子、醫療保健、製造、汽車、農業、零售、網路安全、人力資源、行銷、法律、金融科技和政府)- 行業趨勢和預測到 2032 年
人工智慧(AI)晶片組市場規模
- 2024 年全球人工智慧 (AI) 晶片組市場規模為732.4 億美元 ,預計 到 2032 年將達到 5,581.8 億美元,預測期內 複合年增長率為 28.9%。
- 市場成長主要得益於人工智慧應用對高速處理器的需求不斷增長、醫療保健、汽車、金融和製造等領域對人工智慧的日益普及,以及公共和私營部門對人工智慧研發的投資不斷增加
- 晶片架構的進步,包括神經形態和量子計算元素的集成,預計將解鎖新的性能基準,並加速人工智慧在複雜和即時場景中的應用
人工智慧(AI)晶片組市場分析
- 受資料中心技術普及以及各行各業機器學習和深度學習模型日益普及的推動,人工智慧晶片組市場正在強勁擴張
- 邊緣運算正在獲得顯著的關注,增加了對能夠即時處理數據的節能人工智慧晶片的需求
- 北美在人工智慧 (AI) 晶片組市場佔據主導地位,2024 年其收入份額最高,為 44.3%,這得益於對人工智慧開發的大力投資、完善的數據中心基礎設施以及各行各業廣泛部署的人工智慧解決方案
- 預計亞太地區將見證全球人工智慧 (AI) 晶片組市場的最高成長率,這得益於新興經濟體越來越多地採用人工智慧技術、對智慧城市和工業自動化項目的投資不斷增加,以及中國、台灣和韓國等國家存在低成本半導體製造中心
- 處理器領域在2024年佔據市場主導地位,營收份額最高,達到61.5%,這得益於深度學習和神經網路訓練等人工智慧工作負載對高效能運算日益增長的需求。圖形處理單元 (GPU) 和專用積體電路 (ASIC) 因其平行處理能力和針對人工智慧任務的最佳化設計而特別搶手。該領域將繼續受益於技術進步以及在雲端和邊緣環境中日益增長的部署。
報告範圍和人工智慧(AI)晶片組市場細分
|
屬性 |
人工智慧(AI)晶片組關鍵市場洞察 |
|
涵蓋的領域 |
|
|
覆蓋國家 |
北美洲
歐洲
亞太
中東和非洲
南美洲
|
|
主要市場參與者 |
|
|
市場機會 |
|
|
加值資料資訊集 |
除了市場價值、成長率、市場區隔、地理覆蓋範圍、市場參與者和市場情景等市場洞察之外,Data Bridge 市場研究團隊策劃的市場報告還包括深入的專家分析、進出口分析、定價分析、生產消費分析和 pestle 分析。 |
人工智慧(AI)晶片組市場趨勢
“人工智慧晶片組在邊緣設備中的整合度不斷提高”
- 對即時處理和低延遲決策日益增長的需求,推動了 AI 晶片組在邊緣設備中的應用。這些晶片組透過實現本地化處理,減少了對雲端基礎設施的依賴。這種轉變在自動駕駛、工業自動化和視訊監控等應用中尤其重要。
- 嵌入消費性電子產品的 AI 晶片組正在增強設備的智慧化和個人化。智慧型手機、智慧音箱和穿戴式裝置如今都配備了神經處理單元,可以在裝置上處理複雜的 AI 任務。這項發展顯著提升了回應時間、電池壽命和用戶體驗。
- 邊緣 AI 晶片組的設計尺寸更小,能源效率更高,以適應緊湊型設備。這些晶片可在不消耗能源的情況下持續提供 AI 功能。它們的部署正在無人機、醫療設備和物聯網感測器領域不斷擴展。
- 例如,Google的 Edge TPU 晶片為其 Coral 設備提供支持,用於製造和零售行業,實現設備上的圖像分類和分析。這些晶片在本地處理數據,從而減少頻寬佔用並確保即時決策。 Coral 的成功表明,邊緣 AI 正在各個行業中擴展。
- 向邊緣 AI 處理的轉變正在改變消費級和工業級應用。專為本地化高效運算而客製化的 AI 晶片組正在性能和創新方面樹立新的標竿。隨著對智慧、響應式系統的需求持續增長,這一趨勢預計將加速發展。
人工智慧(AI)晶片組市場動態
司機
“各行各業人工智慧應用激增”
- 人工智慧在醫療保健、金融、汽車和製造等領域的日益普及,推動了對高性能晶片組的需求。這些行業依賴人工智慧進行診斷、詐欺檢測、預測性維護和智慧自動化。人工智慧晶片組的多功能性使其成為現代基礎設施中必不可少的工具。
- 企業正在大力投資人工智慧開發,這推動了對專用硬體的需求,以支援複雜的機器學習和深度學習模型。人工智慧晶片組提供了有效訓練和部署此類模型所需的運算能力。隨著企業不斷擴展其人工智慧能力,對強大處理器的需求持續成長。
- AI 晶片組正在賦能自動駕駛汽車和精準醫療等下一代應用的高級功能。這些系統依賴快速、可靠且節能的處理能力。 AI 晶片有助於將即時數據轉化為切實可行的洞察,從而改善各個領域的成果。
- 例如,特斯拉客製化的全自動駕駛 (FSD) 晶片能夠處理來自多個感測器的數據,從而實現無需外部連接即可實現自動駕駛。該晶片的性能和速度使特斯拉能夠顯著提升其駕駛輔助功能。這個例子凸顯了晶片組創新在人工智慧部署中的重要性。
- 跨產業應用人工智慧技術正在推動人工智慧晶片組市場的長期成長。這些處理器對於實現更智慧的系統和更有效率的決策至關重要。隨著人工智慧越來越深入地融入日常運營,對先進晶片組的需求將持續激增。
克制/挑戰
“開發成本高且技術複雜”
- 設計 AI 晶片組需要複雜的架構、先進的製造流程和專業的技能,因此開發成本很高。與傳統處理器不同,AI 晶片必須支援平行運算和自適應學習模型。這種複雜性為新進入者設定了門檻,並延長了產品開發時間。
- 人工智慧軟體的快速發展需要不斷升級硬體以保持相容性和效能。晶片製造商面臨快速創新的壓力,這增加了研發和營運成本。這種動態給在競爭激烈的環境中運作的公司帶來了永續發展的挑戰。
- 規模較小的公司和新創公司通常缺乏在人工智慧硬體領域競爭所需的資金和技術資源。大型企業的主導地位限制了多樣性,並減緩了人工智慧晶片組普及的進程。如果沒有各方通力合作,這些差距可能會阻礙更廣泛的市場參與。
- 例如,英特爾專注於人工智慧的Nervana和Habana Labs晶片在生產方面遭遇挫折,影響了與英偉達等競爭對手的競爭力。產品推出延遲和整合挑戰限制了其在關鍵領域的市場份額。這說明即使是老牌企業在人工智慧晶片創新方面也面臨困境。
- AI晶片組開發的成本和複雜性仍然是市場擴張的關鍵挑戰。克服這些障礙需要模組化設計策略、生態系統協作以及可擴展的生產技術。解決這些問題對於實現廣泛應用和市場成熟至關重要。
人工智慧(AI)晶片組市場範圍
市場根據硬體、技術、功能和最終用戶進行細分。
• 透過硬體
人工智慧 (AI) 晶片組市場按硬體細分,可分為處理器、記憶體和網路。處理器領域佔據市場主導地位,2024 年營收份額最高,達 61.5%,這得益於深度學習和神經網路訓練等 AI 工作負載對高效能運算日益增長的需求。圖形處理單元 (GPU) 和專用積體電路 (ASIC) 因其平行處理能力和針對 AI 任務的最佳化設計而特別搶手。該領域持續受益於技術進步以及雲端和邊緣環境中日益增長的部署。
預計網路領域將在2025年至2032年期間實現最快的成長,這得益於複雜系統中人工智慧元件之間高效能資料傳輸需求的不斷增長。高速互連和針對人工智慧優化的網路解決方案對於資料中心和邊緣部署至關重要,因為在這些部署中,降低延遲和優化頻寬對於即時處理和人工智慧模型推理至關重要。
• 依技術
人工智慧 (AI) 晶片組市場按技術細分,可分為機器學習、自然語言處理、情境感知計算、電腦視覺和預測分析。機器學習領域在 2024 年佔據了最大的市場收入份額,這得益於其在詐欺偵測、推薦引擎和客戶行為分析等應用領域的廣泛應用。隨著各行各業的企業越來越重視數據驅動的決策,基於機器學習的 AI 晶片組在消費性電子產品、雲端平台和企業系統中的整合度也日益提升。
預計電腦視覺領域將在2025年至2032年期間實現最快的成長,這得益於人工智慧在影像和視訊分析領域的廣泛應用。臉部辨識、自動駕駛汽車和智慧監控系統等應用嚴重依賴電腦視覺技術,而這需要功能強大的專用視覺晶片組,能夠即時處理高解析度視覺數據。
• 按功能
根據功能,人工智慧 (AI) 晶片組市場可細分為訓練和推理兩部分。訓練部分在 2024 年佔據市場主導地位,收入份額最大,這得益於對能夠處理海量資料集和複雜神經網路模型的強大處理單元的需求日益增長。訓練 AI 模型通常需要先進的 GPU 和 ASIC,用於管理高工作負載,尤其是在支援大規模學習應用的雲端基礎架構中。
由於對邊緣即時決策的需求不斷增長,預計推理領域將在2025年至2032年期間實現最快的成長。專注於推理的AI晶片組針對功率效率和快速處理進行了最佳化,使其成為行動裝置、工業自動化和自主系統等對即時響應至關重要的應用的理想選擇。
• 按最終用戶
根據終端用戶,人工智慧 (AI) 晶片組市場細分為消費性電子、醫療保健、製造、汽車、農業、零售、網路安全、人力資源、行銷、法律、金融科技和政府。消費性電子在 2024 年佔據了最大的市場收入份額,這得益於智慧型手機、智慧型電視和穿戴式裝置中 AI 功能的廣泛應用。嵌入 AI 功能的晶片組透過支援語音助理、臉部辨識和個人化內容推薦來提升用戶體驗。
預計醫療保健領域將在2025年至2032年期間實現最快的成長,這得益於人工智慧在醫療診斷、藥物研發和機器人手術領域的日益普及。人工智慧晶片組在醫療保健系統中實現即時數據分析和預測建模、提高診斷準確性和營運效率方面發揮關鍵作用。
人工智慧(AI)晶片組市場區域分析
- 北美在人工智慧 (AI) 晶片組市場佔據主導地位,2024 年其收入份額最高,為 44.3%,這得益於對人工智慧開發的大力投資、完善的數據中心基礎設施以及各行各業廣泛部署的人工智慧解決方案
- 該地區受益於高度發展的技術生態系統、領先的半導體製造商以及醫療保健、汽車和金融等領域的高人工智慧採用率。
- 政府的積極舉措、企業越來越多地採用機器學習和深度學習工具,以及消費者和工業應用對人工智慧的需求不斷增長,這些因素繼續支持該地區的市場擴張。
美國人工智慧(AI)晶片組市場洞察
2024年,美國人工智慧晶片組市場佔據北美最大的收入份額,這得益於其強大的研發實力、對尖端人工智慧應用的早期採用,以及NVIDIA、英特爾和AMD等主要廠商的主導地位。美國在人工智慧研究和創新領域處於全球領先地位,其晶片組廣泛應用於雲端平台、自主系統和醫療診斷領域。人工智慧消費性電子產品的部署日益普及,加上對先進製造和網路安全的支持,進一步推動了美國各地的需求。
歐洲人工智慧(AI)晶片組市場洞察
預計歐洲人工智慧晶片市場將在2025年至2032年間實現最快成長,這得益於智慧出行、製造業和公共部門應用領域對人工智慧應用日益增長的興趣。該地區各國正在投資數位轉型,尤其是在工業4.0和智慧城市等領域。對資料隱私、符合倫理道德的人工智慧開發和永續性的重視,正在推動節能人工智慧晶片的部署。區域科技中心的出現和日益增長的跨國合作也促進了市場擴張。
德國人工智慧(AI)晶片組市場洞察
預計德國人工智慧晶片市場將在2025年至2032年間實現最快成長,這得益於該國在汽車創新和工業自動化領域的領先地位。人工智慧晶片正越來越多地應用於預測性維護、機器人技術和自動駕駛領域。德國高度重視資料安全和精密工程,這支援了客製化人工智慧硬體的使用,尤其是在智慧工廠和研究設施中。德國持續推動數位主權建設和對半導體創新的支持將進一步促進成長。
英國人工智慧(AI)晶片組市場洞察
英國人工智慧晶片組市場預計將在2025年至2032年期間實現最快成長,這得益於英國政府推出的《人工智慧產業協議》等舉措,以及醫療、金融和法律服務領域人工智慧部署的不斷增加。英國正積極投資人工智慧新創公司和大學主導的研究,鞏固其在歐洲人工智慧生態系統中的地位。人們對人工智慧在網路安全、藥物研發和金融建模領域日益增長的興趣,也推動了對具有高運算效率和可擴展性的專用晶片組的需求。
亞太地區人工智慧(AI)晶片組市場洞察
預計亞太地區人工智慧晶片市場將在2025年至2032年間實現最快成長,這得益於快速數位化、政府的大力支持以及中國、日本、韓國和印度等國家對人工智慧創新不斷增加的投資。該地區受益於大規模製造能力、不斷發展的人工智慧新創企業生態系統,以及人工智慧在電子商務、交通運輸和農業等領域的廣泛應用。人工智慧晶片組的在地化生產以及對經濟高效解決方案日益增長的需求,正在擴大新興經濟體的人工智慧應用。
中國人工智慧(AI)晶片組市場洞察
2024年,在政府主導的「新一代人工智慧發展規劃」等舉措以及對智慧基礎設施的大力投資的推動下,中國人工智慧晶片市場佔據了亞太地區最大的收入份額。中國擁有領先的半導體和人工智慧技術公司,人臉辨識、監控和消費性電子產品領域對人工智慧晶片的需求正在飆升。中國致力於晶片製造的自主化,以及人工智慧在城市和工業環境中的快速部署,是主要的成長動力。
日本人工智慧(AI)晶片組市場洞察
預計日本人工智慧晶片組市場將在2025年至2032年間實現最快成長,這得益於人工智慧與機器人技術、老年護理和先進交通系統的融合。日本的技術領先地位和成熟的電子產業,正推動人工智慧硬體在消費和工業領域的廣泛應用。隨著日本解決勞動力短缺問題並致力於提高營運效率,推理優化晶片組在智慧城市、醫療保健和自動駕駛領域的應用預計將加速。
人工智慧(AI)晶片組市場份額
人工智慧 (AI) 晶片組產業主要由知名公司主導,包括:
- NVIDIA公司(美國)
- 英特爾公司(美國)
- Xilinx公司(美國)
- 三星電子有限公司(韓國)
- 美光科技有限公司(美國)
- 高通科技公司(美國)
- IBM公司(美國)
- 谷歌公司(美國)
- 微軟(美國)
- 亞馬遜網路服務公司(美國)
- 超微半導體公司(美國)
- General Vision Inc.(美國)
- 神話(美國)
- 百度公司(中國)
全球人工智慧(AI)晶片組市場的最新發展
- 2023 年 1 月,恩智浦半導體推出了 i.MX 95 系列,作為其 i.MX 9 系列的一部分。這款高效能處理器整合了 Arm Mali 驅動的 3D 圖形處理引擎、內部機器學習加速器以及先進的資料處理功能。它能夠增強汽車、工業和人機介面 (HMI) 應用的功能,從而鞏固恩智浦在邊緣運算和人工智慧驅動市場的地位。
- 2022年9月,Kinara與恩智浦半導體達成合作,推出Ara-1邊緣AI處理器以及恩智浦的AI產品組合。此次合作旨在擴展AI加速,提升邊緣深度學習推理能力,進而提升兩家公司為各種應用提供整合AI解決方案的能力。
- 2022 年 9 月,英特爾發布了第四代英特爾至強 AI 晶片、Sapphire Rapids 可擴充處理器和資料中心 GPU。此外,英特爾也發表了針對 AI 最佳化的第 13 代英特爾酷睿處理器。這些發展旨在提升遊戲、內容創作和企業 AI 工作負載的效能,從而增強英特爾的 AI 生態系統。
- 2022年8月,英特爾與Aible合作,透過雲端的解決方案為企業客戶優化AI效能。此次合作專注於利用先進的基準測試和工程優化技術,實現快速部署和可衡量的影響,使企業能夠在各個營運領域更有效率地採用AI。
- 2021 年 11 月,恩智浦半導體推出了 i.MX 93 系列應用處理器,專為汽車、智慧家庭和工業自動化而設計。該系列處理器具備邊緣機器學習功能,能夠預測並適應用戶需求,滿足互聯環境中對智慧、響應迅速的設備日益增長的需求。
SKU-
Get online access to the report on the World's First Market Intelligence Cloud
- Interactive Data Analysis Dashboard
- Company Analysis Dashboard for high growth potential opportunities
- Research Analyst Access for customization & queries
- Competitor Analysis with Interactive dashboard
- Latest News, Updates & Trend analysis
- Harness the Power of Benchmark Analysis for Comprehensive Competitor Tracking
研究方法
数据收集和基准年分析是使用具有大样本量的数据收集模块完成的。该阶段包括通过各种来源和策略获取市场信息或相关数据。它包括提前检查和规划从过去获得的所有数据。它同样包括检查不同信息源中出现的信息不一致。使用市场统计和连贯模型分析和估计市场数据。此外,市场份额分析和关键趋势分析是市场报告中的主要成功因素。要了解更多信息,请请求分析师致电或下拉您的询问。
DBMR 研究团队使用的关键研究方法是数据三角测量,其中包括数据挖掘、数据变量对市场影响的分析和主要(行业专家)验证。数据模型包括供应商定位网格、市场时间线分析、市场概览和指南、公司定位网格、专利分析、定价分析、公司市场份额分析、测量标准、全球与区域和供应商份额分析。要了解有关研究方法的更多信息,请向我们的行业专家咨询。
可定制
Data Bridge Market Research 是高级形成性研究领域的领导者。我们为向现有和新客户提供符合其目标的数据和分析而感到自豪。报告可定制,包括目标品牌的价格趋势分析、了解其他国家的市场(索取国家列表)、临床试验结果数据、文献综述、翻新市场和产品基础分析。目标竞争对手的市场分析可以从基于技术的分析到市场组合策略进行分析。我们可以按照您所需的格式和数据样式添加您需要的任意数量的竞争对手数据。我们的分析师团队还可以为您提供原始 Excel 文件数据透视表(事实手册)中的数据,或者可以帮助您根据报告中的数据集创建演示文稿。

