Global Artificial Intelligence Ai In Drug Discovery Market
市场规模(十亿美元)
CAGR :
%
USD
981.64 Million
USD
1,483.82 Million
2024
2032
| 2025 –2032 | |
| USD 981.64 Million | |
| USD 1,483.82 Million | |
|
|
|
全球人工智慧 (AI)在藥物發現市場中的細分,按應用(新型候選藥物、藥物優化和重新利用臨床前測試和批准、藥物監測、尋找新疾病相關靶點和途徑、了解疾病機制、匯總和綜合信息、假設的形成和驗證、從頭藥物設計、尋找舊藥的藥物標靶等)、技術(機器學習、深度學習、自然語言處理等)、藥物類型(小分子和大分子)、產品(軟體和服務)、適應症(免疫腫瘤學、神經退化性疾病、心血管疾病、代謝性疾病等)、最終用途(合約研究組織(CRO)、製藥和生物技術公司、研究中心和學術機構等) - 產業趨勢和預測到 2032 年
人工智慧(AI)藥物研發市場規模
- 2024 年全球藥物研發人工智慧 (AI) 市值為 9.8164 億美元,預計到 2032 年將達到 14.8382 億美元
- 在 2025 年至 2032 年的預測期內,市場可能以 5.30% 的複合年增長率成長,主要原因是醫療保健數據的可用性不斷提高
- 這種成長受到慢性病盛行率上升以及人工智慧技術進步促進藥物研發過程等因素的推動
人工智慧(AI)在藥物研發中的市場分析
- 在機器學習和深度學習等人工智慧技術的進步的推動下,市場正在經歷快速增長,這些技術簡化了藥物發現流程並降低了成本。
- 人工智慧被廣泛應用於藥物優化、藥物再利用、臨床前測試和臨床試驗設計,大大加快了藥物開發進度
- 北美憑藉其強大的製藥行業引領市場,而亞太地區預計將在研發投資增加的推動下快速成長
例如,機器學習和深度學習等人工智慧技術正被用於預測臨床試驗的成功率、優化候選藥物、確定新的治療靶點,從而顯著減少藥物開發的時間和成本。
- 人工智慧在藥物研發的應用正在徹底改變製藥業,解決傳統藥物開發過程中成本高、時間長、成功率低等問題。
報告範圍和藥物研發市場細分中的人工智慧(AI)
|
屬性 |
人工智慧(AI)在藥物研發中的關鍵市場洞察 |
|
涵蓋的領域 |
|
|
覆蓋國家 |
北美洲
歐洲
亞太
中東和非洲
南美洲
|
|
主要市場參與者 |
|
|
市場機會 |
|
|
加值資料資訊集 |
除了對市場價值、成長率、細分、地理覆蓋範圍和主要參與者等市場情景的洞察之外,Data Bridge Market Research 策劃的市場報告還包括進出口分析、生產能力概覽、生產消費分析、價格趨勢分析、氣候變遷情景、供應鏈分析、價值鏈分析、原材料/消耗品概覽、供應商選擇標準、PESTLE 分析、波特分析和監管框架。 |
人工智慧(AI)在藥物研發中的市場趨勢
“人工智慧驅動的創新正在徹底改變藥物研發”
- 藥物研發市場人工智慧的一個突出趨勢是越來越多地採用機器學習和深度學習技術來簡化藥物開發流程。
- 這些先進技術透過分析大量資料集、預測分子結合特性和識別潛在候選藥物,提高了藥物發現的效率和準確性。
- 例如,人工智慧平台正被用於將現有藥物重新用於新的治療領域,從而顯著減少與傳統藥物研發方法相關的時間和成本。
- 人工智慧的整合還可以透過預測成功率和識別患者群體來實現更好的臨床試驗設計,從而提高藥物開發的整體成功率。
- 這一趨勢正在改變製藥業,加速創新療法的開發,並解決未滿足的醫療需求,從而推動市場對人工智慧驅動解決方案的需求。
人工智慧(AI)在藥物研發市場中的動態
司機
“製藥業研發投入不斷增加”
- 製藥公司正在增加研發預算以開發新藥和新療法,以確保保持競爭力並滿足不斷變化的患者需求。
- 人工智慧工具被整合到研發流程中,以增強藥物發現,從而能夠更快地識別候選藥物,提高成功率並優化早期研究。
- 人工智慧可以實現高通量篩選,顯著加快化合物測試過程並確定有希望進一步開發的候選藥物。
- 人工智慧可以處理來自基因組學、臨床試驗和患者人口統計數據的大型數據集,以發現隱藏的模式,從而加速識別新的治療目標。
- 透過人工智慧演算法優化患者招募和試驗設計,製藥公司可以進行更有效率的臨床試驗,從而減少時間和成本。
例如,
- 賽諾菲與Exscientia合作,利用人工智慧設計新型候選藥物,加速臨床試驗進程。在一次合作中,他們僅用傳統方法所需時間的一小部分就確定了一種有望治療自體免疫疾病的候選藥物。
- 葛蘭素史克 (GSK)和24M正在合作應用人工智慧來優化研發流程,包括確定新的藥物標靶和加速新療法(例如針對罕見疾病)的開發。
- 研發投入的不斷增加,加上人工智慧的力量,大大增強了製藥業更快、更經濟、更精確地發現新藥的能力。
機會
“增強臨床試驗的預測模型”
- 人工智慧可以透過確定最合適的試驗參數(例如樣本量、終點和治療方案)來優化臨床試驗設計,從而實現更有效率、更有效的研究。
- 透過分析電子健康記錄和其他數據,人工智慧可以根據特定的納入/排除標準來幫助確定適合臨床試驗的患者,從而提高招募速度和準確性。
- 人工智慧模型可以根據歷史數據和即時洞察預測臨床試驗的成功或失敗,從而可以提前調整試驗方案並增加成功的機會。
- 透過使用預測分析,人工智慧可以識別有退出風險的患者並建議幹預措施以讓他們繼續參與,從而減少未完成試驗的數量。
- 人工智慧能夠簡化臨床試驗流程(從參與者選擇到結果預測),從而顯著降低與傳統試驗方法相關的成本。
例如,
- 輝瑞與IBM Watson Health合作,利用人工智慧 (AI)來加強臨床試驗參與者的招募,並優化罕見疾病治療藥物研發的試驗設計。他們的 AI 驅動方法有助於加快招募速度並改善試驗結果。
- 諾華公司利用人工智慧預測患者反應,並優化其基因療法的試驗設計。這種人工智慧驅動的方法帶來了更有針對性的治療方案和更有效率的臨床試驗。
- 人工智慧能夠增強臨床試驗中的預測模型,從而帶來顯著優勢,包括更有效率的試驗設計、更快的患者招募、降低成本和改善試驗結果,最終加速新療法的開發。
克制/挑戰
“初始投資成本高”
- 人工智慧驅動的工具需要昂貴的技術基礎設施,包括強大的運算系統、資料儲存解決方案和專用軟體,因此初始投資很高。
- 招募具有人工智慧和藥物發現知識的資料科學家、人工智慧專家和生物製藥研究人員等熟練的專業人員成本很高,這增加了在研發中實施人工智慧的財務負擔。
- 將人工智慧工具整合到現有的藥物發現工作流程中,尤其是在遺留系統中,需要大量的財政資源進行調整、培訓和優化。
- 人工智慧技術需要持續維護、軟體更新和硬體升級,以跟上機器學習和數據分析的進步,這會增加長期營運成本。
- 藥物研發中的人工智慧系統依賴龐大、高品質的資料集,而對於小型公司或新創公司來說,獲取或授權此類資料集的成本可能很高,從而進一步提高了人工智慧實施的成本。
例如,
- BenevolentAI投入巨資,打造 AI 驅動的藥物研發平台和專業知識,以簡化藥物研發流程,並專注於腫瘤學領域。儘管初期投入巨大,但他們的方法加快了藥物研發速度,並提高了成功率。
- Insilico Medicine是一家利用人工智慧進行藥物研發的新創公司,該公司需要大量的前期投資來建立其人工智慧驅動的平台,這使他們能夠加速纖維化和癌症等疾病的藥物開發,但成本很高,規模較小的競爭對手難以匹敵。
- 藥物研發中人工智慧的高昂初始投資成本為小型公司和新創公司帶來了障礙,限制了它們與能夠負擔得起這些技術的大型機構競爭的能力。克服這項挑戰可能需要創新的融資模式或合作夥伴關係,使更廣泛的製藥業參與者能夠更容易使用人工智慧。
人工智慧(AI)在藥物研發市場的應用
市場根據應用、產品類型、技術、放大類型、最終用戶和分銷管道進行細分。
|
分割 |
細分 |
|
按應用 |
|
|
依技術 |
|
|
依藥物類型 |
|
|
透過提供 |
|
|
按適應症 |
|
|
按最終用途
|
|
人工智慧(AI)藥物研發市場區域分析
“北美是藥物研發市場人工智慧(AI)的主導地區”
- 北美在藥物研發市場的人工智慧 (ai) 領域佔據主導地位,這得益於先進的醫療基礎設施、尖端醫療技術的高度採用以及主要市場參與者的強大影響力
- 美國擁有一些大型製藥公司,例如輝瑞、強生、默克和禮來,它們在藥物研發中採用人工智慧方面處於領先地位。這些公司正在大力投資人工智慧,以簡化藥物開發流程並改善療效。
- 北美擁有完善的科技生態系統,IBM Watson Health和Google DeepMind等主要 AI 公司正在推動藥物研發領域的創新。這些公司在 AI 研究領域處於領先地位,並為藥物研發提供強大的 AI 工具。
- 北美一直將其GDP的很大一部分投入研發(R&D)。這些資金推動了先進人工智慧技術在藥物研發的應用,因為各大公司都在尋求加速新藥和新療法研發的方法。
- 北美已見證了許多製藥公司與AI新創公司或科技公司之間的合作。例如,諾華與微軟合作,將AI應用於藥物研發,彰顯了該地區在利用AI進行藥物研發創新方面的領先地位。
“亞太地區預計將實現最高成長率”
- 預計亞太地區將見證藥物研發人工智慧 (AI)的最高成長率,這得益於醫療保健基礎設施的快速擴張、人們對眼睛健康的認識的提高以及手術量的增加。
- 中國、印度和日本等國家正大力投資人工智慧和生物技術,旨在增強其製藥業,滿足日益增長的醫療保健需求。這些投資正在加速人工智慧在藥物研發的應用。
- 亞太地區各國政府正積極透過各種措施推動數位醫療與人工智慧的融合。例如,中國已實施將人工智慧融入醫療保健領域的國家策略,推動人工智慧在藥物研發領域的發展。
- 亞太國家人口眾多,擁有大量健康數據,可用於人工智慧驅動的藥物研發。該地區強大的數位基礎設施支援將人工智慧技術應用於藥物研發。
- 亞太地區 (APAC)是藥物研發市場人工智慧成長最快的地區,這得益於不斷增加的投資、政府的支持性政策、龐大的數據池以及利用人工智慧技術的生物技術公司的擴張。
人工智慧(AI)在藥物研發中的市場份額
市場競爭格局按競爭對手提供詳細資料。詳細資訊包括公司概況、公司財務狀況、收入、市場潛力、研發投入、新市場計劃、全球影響力、生產基地和設施、生產能力、公司優勢和劣勢、產品發布、產品寬度和廣度以及應用主導地位。以上提供的數據點僅與公司在市場中的重點相關。
市場中主要的市場領導者有:
- NVIDIA公司(美國)
- IBM公司(美國)
- Atomwise Inc.(美國)
- 微軟(美國)
- 仁慈的人工智慧(英國)
- Aria Pharmaceuticals, Inc.(美國)
- DEEP GEOMICS(加拿大)
- Exscientia(英國)
- Insilico Medicine(香港)
- Cyclica(加拿大)
- NuMedii, Inc.(美國)
- Envisagenics(美國)
- Owkin Inc.(美國)
- BERG LLC(美國)
- 薛丁格公司(美國)
- 晶泰科技(中國)
- BIOAGE Inc.(美國)
全球人工智慧(AI)在藥物研發市場的最新發展
- 2024年5月,GoogleDeepMind發布了其AlphaFold AI模型的第三版,旨在增強藥物開發和改善疾病靶向性。這個進階版本使DeepMind和Isomorphic Labs的研究人員能夠分析所有分子的行為,包括人類DNA。
- 2024年4月,專注於人工智慧藥物研發的創新公司Xaira Therapeutics在與ARCH Venture Partners和Foresite Labs的合作融資中獲得了超過100萬美元的資金。該公司利用機器學習、數據生成模型和治療產品開發,專注於攻克傳統上難以攻克的藥物標靶。
- 2023年12月,默克公司生命科學部門MilliporeSigma推出了一款尖端藥物研發軟體AIDDISON。該平台透過整合Synthia逆合成軟體API,彌合了虛擬分子設計與實際生產製造之間的差距。它結合了生成式人工智慧、機器學習和電腦輔助藥物設計,以簡化藥物開發流程。
- 2023年5月,Google推出了兩款創新的人工智慧驅動工具,旨在幫助生物科技和製藥公司加速藥物研發並完善精準醫療。這些解決方案旨在減少將新療法引入美國市場所需的時間和成本。這些工具的早期採用者包括Cerevel Therapeutics、輝瑞和Colossal Biosciences 。
SKU-
Get online access to the report on the World's First Market Intelligence Cloud
- Interactive Data Analysis Dashboard
- Company Analysis Dashboard for high growth potential opportunities
- Research Analyst Access for customization & queries
- Competitor Analysis with Interactive dashboard
- Latest News, Updates & Trend analysis
- Harness the Power of Benchmark Analysis for Comprehensive Competitor Tracking
目录
1 INTRODUCTION
1.1 OBJECTIVES OF THE STUDY
1.2 MARKET DEFINITION
1.3 OVERVIEW OF GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET
1.4 CURRENCY AND PRICING
1.5 LIMITATION
1.6 MARKETS COVERED
2 MARKET SEGMENTATION
2.1 KEY TAKEAWAYS
2.2 ARRIVING AT THE GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET SIZE
2.3 VENDOR POSITIONING GRID
2.4 MARKETS COVERED
2.5 GEOGRAPHIC SCOPE
2.6 YEARS CONSIDERED FOR THE STUDY
2.7 RESEARCH METHODOLOGY
2.8 TECHNOLOGY LIFE LINE CURVE
2.9 MULTIVARIATE MODELLING
2.1 PRIMARY INTERVIEWS WITH KEY OPINION LEADERS
2.11 DBMR MARKET POSITION GRID
2.12 MARKET APPLICATION COVERAGE GRID
2.13 DBMR MARKET CHALLENGE MATRIX
2.14 SECONDARY SOURCES
2.15 GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET: RESEARCH SNAPSHOT
2.16 ASSUMPTIONS
3 MARKET OVERVIEW
3.1 DRIVERS
3.2 RESTRAINTS
3.3 OPPORTUNITIES
3.4 CHALLENGES
4 EXECUTIVE SUMMARY
5 PREMIUM INSIGHTS
5.1 PESTEL ANALYSIS
5.2 PORTER’S FIVE FORCES MODEL
6 INDUSTRY INSIGHTS
6.1 MICRO AND MACRO ECONOMIC FACTORS
6.2 PENETRATION AND GROWTH PROSPECT MAPPING
6.3 KEY PRICING STRATEGIES
6.4 INTERVIEWS WITH SPECIALIST
6.5 ANALYIS AND RECOMMENDATION
7 INTELLECTUAL PROPERTY (IP) PORTFOLIO
7.1 PATENT QUALITY AND STRENGTH
7.2 PATENT FAMILIES
7.3 LICENSING AND COLLABORATIONS
7.4 COMPETITIVE LANDSCAPE
7.5 IP STRATEGY AND MANAGEMENT
7.6 OTHER
8 COST ANALYSIS BREAKDOWN
9 TECHNONLOGY ROADMAP
10 INNOVATION TRACKER AND STRATEGIC ANALYSIS
10.1 MAJOR DEALS AND STRATEGIC ALLIANCES ANALYSIS
10.1.1 JOINT VENTURES
10.1.2 MERGERS AND ACQUISITIONS
10.1.3 LICENSING AND PARTNERSHIP
10.1.4 TECHNOLOGY COLLABORATIONS
10.1.5 STRATEGIC DIVESTMENTS
10.2 NUMBER OF PRODUCTS IN DEVELOPMENT
10.3 STAGE OF DEVELOPMENT
10.4 TIMELINES AND MILESTONES
10.5 INNOVATION STRATEGIES AND METHODOLOGIES
10.6 RISK ASSESSMENT AND MITIGATION
10.7 FUTURE OUTLOOK
11 REGULATORY COMPLIANCE
11.1 REGULATORY AUTHORITIES
11.2 REGULATORY CLASSIFICATIONS
11.2.1 CLASS I
11.2.2 CLASS II
11.2.3 CLASS III
11.3 REGULATORY SUBMISSIONS
11.4 INTERNATIONAL HARMONIZATION
11.5 COMPLIANCE AND QUALITY MANAGEMENT SYSTEMS
11.6 REGULATORY CHALLENGES AND STRATEGIES
12 REIMBURSEMENT FRAMEWORK
13 OPPUTUNITY MAP ANALYSIS
14 VALUE CHAIN ANALYSIS
15 HEALTHCARE ECONOMY
15.1 HEALTHCARE EXPENDITURE
15.2 CAPITAL EXPENDITURE
15.3 CAPEX TRENDS
15.4 CAPEX ALLOCATION
15.5 FUNDING SOURCES
15.6 INDUSTRY BENCHMARKS
15.7 GDP RATION IN OVERALL GDP
15.8 HEALTHCARE SYSTEM STRUCTURE
15.9 GOVERNMENT POLICIES
15.1 ECONOMIC DEVELOPMENT
16 GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY OFFERING
16.1 OVERVIEW
16.2 SOFTWARE
16.2.1 INTEGRATED
16.2.2 STANDALONE
16.3 SERVICES
17 GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY TECHNOLOGY
17.1 OVERVIEW
17.2 MACHINE LEARNING (ML)
17.2.1 SUPERVISED LEARNING
17.2.2 UNSUPERVISED LEARNING
17.2.3 REINFORCEMENT LEARNING
17.3 DEEP LEARNING
17.4 NATURAL LANGUAGE PROCESSING (NLP)
17.5 OTHERS
18 GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY DRUG TYPE
18.1 OVERVIEW
18.2 SMALL MOLECULE
18.3 LARGE MOLECULE
19 GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY APPLICATION
19.1 OVERVIEW
19.2 NOVEL DRUG CANDIDATES
19.2.1 IDENTIFY BIOLOGICS TARGET
19.2.2 PREDICT BIOACTIVITY OF SMALL MOLECULE
19.2.3 OTHERS
19.3 DRUG OPTIMISATION AND REPURPOSING PRECLINICAL TESTING AND APPROVAL
19.4 DRUG MONITORING
19.5 FINDING NEW DISEASES ASSOCIATED TARGETS AND PATHWAYS
19.6 UNDERSTANDING DISEASE MECHANISMS
19.7 AGGREGATING AND SYNTHESIZING INFORMATION
19.8 FORM ATION & QUALIFICATION OF HYPOTHESES
19.9 DE NOVO DRUG DESIGN
19.1 FINDING DRUG TARGETS OF AN OLD DRUG
19.11 OTHERS
20 GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY INDICATION
20.1 OVERVIEW
20.2 IMMUNO-ONCOLOGY
20.2.1 PROSTATE CANCER
20.2.2 BREAST CANCER
20.2.3 BRAIN CANCER
20.2.4 LUNG CANCER
20.2.5 PANCREATIC CANCER
20.2.6 COLORECTAL CANCER
20.2.7 LEUKEMIA
20.2.8 OTHERS
20.3 NEURODEGENERATIVE DISEASES
20.4 CARDIOVASCULAR DISEASES
20.5 METABOLIC DISEASES
20.6 OTHERS
21 GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY END USER
21.1 OVERVIEW
21.2 PHARMACEUTICAL & BIOTECHNOLOGY COMPANIES
21.3 CONTRACT RESEARCH ORGANIZATIONS
21.4 RESEARCH CENTRES AND ACADEMIC INSTITUTES
21.5 OTHERS
22 GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY REGION, 2022-2031, (USD MILLION)
GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, (ALL SEGMENTATION PROVIDED ABOVE IS REPRESENTED IN THIS CHAPTER BY COUNTRY)
22.1 OVERVIEW
22.2 NORTH AMERICA
22.2.1 U.S.
22.2.2 CANADA
22.2.3 MEXICO
22.3 EUROPE
22.3.1 GERMANY
22.3.2 U.K.
22.3.3 ITALY
22.3.4 FRANCE
22.3.5 SPAIN
22.3.6 SWITZERLAND
22.3.7 RUSSIA
22.3.8 TURKEY
22.3.9 BELGIUM
22.3.10 NETHERLANDS
22.3.11 REST OF EUROPE
22.4 ASIA-PACIFIC
22.4.1 JAPAN
22.4.2 CHINA
22.4.3 SOUTH KOREA
22.4.4 INDIA
22.4.5 AUSTRALIA & NEW ZEALAND
22.4.6 SINGAPORE
22.4.7 THAILAND
22.4.8 INDONESIA
22.4.9 MALAYSIA
22.4.10 PHILIPPINES
22.4.11 REST OF ASIA-PACIFIC
22.5 SOUTH AMERICA
22.5.1 BRAZIL
22.5.2 ARGENTINA
22.5.3 REST OF SOUTH AMERICA
22.6 MIDDLE EAST AND AFRICA
22.6.1 SOUTH AFRICA
22.6.2 EGYPT
22.6.3 SAUDI ARABIA
22.6.4 UNITED ARAB EMIRATES
22.6.5 ISRAEL
22.6.6 REST OF MIDDLE EAST AND AFRICA
23 GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, COMPANY LANDSCAPE
23.1 COMPANY SHARE ANALYSIS: GLOBAL
23.2 COMPANY SHARE ANALYSIS: NORTH AMERICA
23.3 COMPANY SHARE ANALYSIS: EUROPE
23.4 COMPANY SHARE ANALYSIS: ASIA-PACIFIC
23.5 MERGERS & ACQUISITIONS
23.6 NEW PRODUCT DEVELOPMENT & APPROVALS
23.7 EXPANSIONS
23.8 REGULATORY CHANGES
23.9 PARTNERSHIP AND OTHER STRATEGIC UPDATES
24 SWOT ANALYSIS AND DATA BRIDGE MARKET RESEARCH ANALYSIS
25 GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, COMPANY PROFILE
25.1 MICROSOFT
25.1.1 COMPANY OVERVIEW
25.1.2 REVENUE ANALYSIS
25.1.3 PRODUCT PORTFOLIO
25.1.4 RECENT DEVELOPMENTS
25.2 SHANGHAI MEDICILON INC.
25.2.1 COMPANY OVERVIEW
25.2.2 REVENUE ANALYSIS
25.2.3 PRODUCT PORTFOLIO
25.2.4 RECENT DEVELOPMENTS
25.3 NVIDIA CORPORATION + ASTRAZENECA
25.3.1 COMPANY OVERVIEW
25.3.2 REVENUE ANALYSIS
25.3.3 PRODUCT PORTFOLIO
25.3.4 RECENT DEVELOPMENTS
25.4 ATOMWISE INC.
25.4.1 COMPANY OVERVIEW
25.4.2 REVENUE ANALYSIS
25.4.3 PRODUCT PORTFOLIO
25.4.4 RECENT DEVELOPMENTS
25.5 DEEP GENOMICS
25.5.1 COMPANY OVERVIEW
25.5.2 REVENUE ANALYSIS
25.5.3 PRODUCT PORTFOLIO
25.5.4 RECENT DEVELOPMENTS
25.6 CLOUD PHARMACEUTICALS INC.
25.6.1 COMPANY OVERVIEW
25.6.2 REVENUE ANALYSIS
25.6.3 PRODUCT PORTFOLIO
25.6.4 RECENT DEVELOPMENTS
25.7 INSILICO MEDICINE
25.7.1 COMPANY OVERVIEW
25.7.2 REVENUE ANALYSIS
25.7.3 PRODUCT PORTFOLIO
25.7.4 RECENT DEVELOPMENTS
25.8 BENEVOLENTAI
25.8.1 COMPANY OVERVIEW
25.8.2 REVENUE ANALYSIS
25.8.3 PRODUCT PORTFOLIO
25.8.4 RECENT DEVELOPMENTS
25.9 EXSCIENTIA
25.9.1 COMPANY OVERVIEW
25.9.2 REVENUE ANALYSIS
25.9.3 PRODUCT PORTFOLIO
25.9.4 RECENT DEVELOPMENTS
25.1 CYCLICA
25.10.1 COMPANY OVERVIEW
25.10.2 REVENUE ANALYSIS
25.10.3 PRODUCT PORTFOLIO
25.10.4 RECENT DEVELOPMENTS
25.11 OWKIN, INC
25.11.1 COMPANY OVERVIEW
25.11.2 REVENUE ANALYSIS
25.11.3 PRODUCT PORTFOLIO
25.11.4 RECENT DEVELOPMENTS
25.12 ENVISAGENICS
25.12.1 COMPANY OVERVIEW
25.12.2 REVENUE ANALYSIS
25.12.3 PRODUCT PORTFOLIO
25.12.4 RECENT DEVELOPMENTS
25.13 NUMEDII, INC.
25.13.1 COMPANY OVERVIEW
25.13.2 REVENUE ANALYSIS
25.13.3 PRODUCT PORTFOLIO
25.13.4 RECENT DEVELOPMENTS
25.14 BIOSYNTAGMA
25.14.1 COMPANY OVERVIEW
25.14.2 REVENUE ANALYSIS
25.14.3 PRODUCT PORTFOLIO
25.14.4 RECENT DEVELOPMENTS
25.15 COLLABORATIONS PHARMACEUTICALS, INC.
25.15.1 COMPANY OVERVIEW
25.15.2 REVENUE ANALYSIS
25.15.3 PRODUCT PORTFOLIO
25.15.4 RECENT DEVELOPMENTS
25.16 INVENIAI LLC
25.16.1 COMPANY OVERVIEW
25.16.2 REVENUE ANALYSIS
25.16.3 PRODUCT PORTFOLIO
25.16.4 RECENT DEVELOPMENTS
25.17 RECURSION PHARMACEUTICALS, INC. + NVIDIA CORPORATION
25.17.1 COMPANY OVERVIEW
25.17.2 REVENUE ANALYSIS
25.17.3 PRODUCT PORTFOLIO
25.17.4 RECENT DEVELOPMENTS
25.18 VALO HEALTH
25.18.1 COMPANY OVERVIEW
25.18.2 REVENUE ANALYSIS
25.18.3 PRODUCT PORTFOLIO
25.18.4 RECENT DEVELOPMENTS
25.19 AIFORIA
25.19.1 COMPANY OVERVIEW
25.19.2 REVENUE ANALYSIS
25.19.3 PRODUCT PORTFOLIO
25.19.4 RECENT DEVELOPMENTS
25.2 CHEMALIVE
25.20.1 COMPANY OVERVIEW
25.20.2 REVENUE ANALYSIS
25.20.3 PRODUCT PORTFOLIO
25.20.4 RECENT DEVELOPMENTS
25.21 DEEPMATTER GROUP LIMITED
25.21.1 COMPANY OVERVIEW
25.21.2 REVENUE ANALYSIS
25.21.3 PRODUCT PORTFOLIO
25.21.4 RECENT DEVELOPMENTS
25.22 MABSILICO.
25.22.1 COMPANY OVERVIEW
25.22.2 REVENUE ANALYSIS
25.22.3 PRODUCT PORTFOLIO
25.22.4 RECENT DEVELOPMENTS
25.23 OPTIBRIUM, LTD.
25.23.1 COMPANY OVERVIEW
25.23.2 REVENUE ANALYSIS
25.23.3 PRODUCT PORTFOLIO
25.23.4 RECENT DEVELOPMENTS
25.24 ABBVIE AND BIGHAT BIOSCIENCES
25.24.1 COMPANY OVERVIEW
25.24.2 REVENUE ANALYSIS
25.24.3 PRODUCT PORTFOLIO
25.24.4 RECENT DEVELOPMENTS
25.25 ADAGENE
25.25.1 COMPANY OVERVIEW
25.25.2 REVENUE ANALYSIS
25.25.3 PRODUCT PORTFOLIO
25.25.4 RECENT DEVELOPMENTS
25.26 PEPTICOM LTD.
25.26.1 COMPANY OVERVIEW
25.26.2 REVENUE ANALYSIS
25.26.3 PRODUCT PORTFOLIO
25.26.4 RECENT DEVELOPMENTS
25.27 DEARGEN INC.
25.27.1 COMPANY OVERVIEW
25.27.2 REVENUE ANALYSIS
25.27.3 PRODUCT PORTFOLIO
25.27.4 RECENT DEVELOPMENTS
25.28 GERO.AI
25.28.1 COMPANY OVERVIEW
25.28.2 REVENUE ANALYSIS
25.28.3 PRODUCT PORTFOLIO
25.28.4 RECENT DEVELOPMENTS
25.29 3BIGS CO. LTD.
25.29.1 COMPANY OVERVIEW
25.29.2 REVENUE ANALYSIS
25.29.3 PRODUCT PORTFOLIO
25.29.4 RECENT DEVELOPMENTS
25.3 BPGBIO INC.
25.30.1 COMPANY OVERVIEW
25.30.2 REVENUE ANALYSIS
25.30.3 PRODUCT PORTFOLIO
25.30.4 RECENT DEVELOPMENTS
25.31 SCHRÖDINGER, INC.
25.31.1 COMPANY OVERVIEW
25.31.2 REVENUE ANALYSIS
25.31.3 PRODUCT PORTFOLIO
25.31.4 RECENT DEVELOPMENTS
25.32 XTALPI INC.
25.32.1 COMPANY OVERVIEW
25.32.2 REVENUE ANALYSIS
25.32.3 PRODUCT PORTFOLIO
25.32.4 RECENT DEVELOPMENTS
25.33 BIOAGE INC.
25.33.1 COMPANY OVERVIEW
25.33.2 REVENUE ANALYSIS
25.33.3 PRODUCT PORTFOLIO
25.33.4 RECENT DEVELOPMENTS
26 RELATED REPORTS
27 QUESTIONNAIRE
28 CONCLUSION
29 ABOUT DATA BRIDGE MARKET RESEARCH
研究方法
数据收集和基准年分析是使用具有大样本量的数据收集模块完成的。该阶段包括通过各种来源和策略获取市场信息或相关数据。它包括提前检查和规划从过去获得的所有数据。它同样包括检查不同信息源中出现的信息不一致。使用市场统计和连贯模型分析和估计市场数据。此外,市场份额分析和关键趋势分析是市场报告中的主要成功因素。要了解更多信息,请请求分析师致电或下拉您的询问。
DBMR 研究团队使用的关键研究方法是数据三角测量,其中包括数据挖掘、数据变量对市场影响的分析和主要(行业专家)验证。数据模型包括供应商定位网格、市场时间线分析、市场概览和指南、公司定位网格、专利分析、定价分析、公司市场份额分析、测量标准、全球与区域和供应商份额分析。要了解有关研究方法的更多信息,请向我们的行业专家咨询。
可定制
Data Bridge Market Research 是高级形成性研究领域的领导者。我们为向现有和新客户提供符合其目标的数据和分析而感到自豪。报告可定制,包括目标品牌的价格趋势分析、了解其他国家的市场(索取国家列表)、临床试验结果数据、文献综述、翻新市场和产品基础分析。目标竞争对手的市场分析可以从基于技术的分析到市场组合策略进行分析。我们可以按照您所需的格式和数据样式添加您需要的任意数量的竞争对手数据。我们的分析师团队还可以为您提供原始 Excel 文件数据透视表(事实手册)中的数据,或者可以帮助您根据报告中的数据集创建演示文稿。

