Global Artificial Intelligence Ai In Insurance Market
市场规模(十亿美元)
CAGR :
%
USD
6.44 Billion
USD
63.27 Billion
2024
2032
| 2025 –2032 | |
| USD 6.44 Billion | |
| USD 63.27 Billion | |
|
|
|
|
全球與深度學習、自然語言處理 (NLP)、機器視覺和機器人自動化)、部署模型(非本地和雲端)、企業規模(大型企業和中小型企業)、應用(索賠管理、風險管理與合規、聊天機器人等)、行業(大型企業和中小型企業)、應用(索賠管理、風險管理與合規、聊天機器人等)、行業(大型企業和中小型企業)、風險
人工智慧(AI)在保險市場的規模
- 2024 年全球保險人工智慧 (AI) 市場價值為64.4 億美元,預計到 2032 年將達到 632.7 億美元
- 在 2025 年至 2032 年的預測期內,市場可能以33.06% 的複合年增長率成長,主要受預測分析進步的推動
- 這一成長受到更好的風險評估和定價、物聯網整合和更快的索賠處理等因素的推動
保險市場分析中的人工智慧(AI)
- 保險中的人工智慧是指使用機器學習、自然語言處理和預測分析等人工智慧技術來增強風險評估、索賠處理、詐欺偵測和客戶參與度
- 市場成長的驅動力在於人工智慧自動化的日益普及、即時數據分析需求的不斷增長以及對強化詐欺檢測的需求。隨著保險公司積極擁抱數位轉型,人工智慧解決方案對於提高效率和降低營運成本至關重要。
- 人工智慧與大數據、物聯網和雲端運算的融合正在重塑保險業格局。人工智慧工具可實現個人化保單定價、自動化核保和預測風險建模,從而優化決策流程。
- 例如,數位優先保險公司Lemonade使用人工智慧聊天機器人在幾分鐘內處理索賠,而Allstate 則採用人工智慧驅動的分析來根據客戶資料優化保單建議
- 受自動化、即時分析和人工智慧驅動決策的推動,保險市場的人工智慧將持續成長。保險科技投資的不斷增加以及對無縫數位體驗的需求將進一步推動市場擴張,保險公司將優先採用人工智慧以保持競爭力。
報告範圍及保險市場細分中的人工智慧(AI)
|
屬性 |
保險業人工智慧(AI)關鍵市場洞察 |
|
涵蓋的領域 |
|
|
覆蓋國家 |
北美洲
歐洲
亞太
中東和非洲
南美洲
|
|
主要市場參與者 |
|
|
市場機會 |
|
|
加值資料資訊集 |
除了市場價值、成長率、市場區隔、地理覆蓋範圍、市場參與者和市場情景等市場洞察之外,Data Bridge 市場研究團隊策劃的市場報告還包括深入的專家分析、進出口分析、定價分析、生產消費分析和 pestle 分析。 |
保險市場趨勢中的人工智慧(AI)
“人工智慧聊天機器人和虛擬助理的使用日益增多”
- 全球人工智慧 (AI) 保險市場的一個突出趨勢是越來越多地使用人工智慧驅動的聊天機器人和虛擬助手
- 這一趨勢是由保險公司整合對話式人工智慧來處理詢問、處理索賠並提供個人化的保單建議,從而縮短回應時間並提高效率所推動的。
- 例如,GEICO 的虛擬助理 Kate為投保人提供即時協助,而 Lemonade 的 AI 聊天機器人 Maya 可在幾分鐘內實現無縫索賠處理
- 對數位優先、全天候客戶服務的需求日益增長,加速了保險業採用人工智慧聊天機器人
- 隨著保險公司尋求降低營運成本並提升用戶體驗,對話式人工智慧的角色將不斷擴大。情感人工智慧和語音辨識技術的未來發展預計將進一步完善聊天機器人的功能,使互動更加人性化和個人化。
人工智慧(AI)在保險市場動態中的作用
司機
“自動化索賠處理的需求不斷增長”
- 對人工智慧 (AI) 和自動化的日益依賴是保險市場 AI 成長的關鍵驅動力。隨著保險公司從傳統的理賠處理轉向 AI 驅動的自動化,對高效、準確的理賠處理的需求變得比以往任何時候都更加重要。
- 這種轉變在健康、汽車和財產保險領域尤其明顯,保險公司正在利用人工智慧驅動的索賠自動化來縮短處理時間、偵測詐欺行為並提升客戶體驗
- 隨著保險公司處理大量理賠數據,理賠管理的複雜性也隨之增加。各公司目前正在投資人工智慧理賠解決方案,以評估損失、驗證文件,並確保與投保人無縫互動,同時降低營運效率。
- 客戶對快速和數位優先理賠的偏好日益增長,進一步刺激了對人工智慧驅動的自動化的需求
- 透過整合機器學習 (ML) 和自然語言處理 (NLP),保險公司可以改善決策,最大限度地減少人為幹預,並增強投保人的信任
例如,
- Progressive Insurance在汽車保險中採用人工智慧損害評估工具,利用電腦視覺分析事故照片並提供即時維修估算
- Allstate 基於人工智慧的索賠系統可偵測詐欺活動,並透過自動化常規索賠評估來確保更快的理賠
- 隨著對人工智慧驅動的自動化和數位轉型的投資不斷增加,人工智慧驅動的索賠處理將在縮短週轉時間、防止欺詐性索賠和提高保單持有人滿意度方面發揮關鍵作用,推動市場持續成長
機會
“擴大人工智慧風險評估”
- 人工智慧驅動的風險評估模型的日益普及,為保險市場的人工智慧帶來了巨大的機會。保險公司正在利用大數據分析、預測模型和機器學習 (ML) 來增強風險評估、個人化保單並提高核保準確性。
- 傳統的風險評估方法依賴歷史資料和標準化標準,這往往導致保單定價和理賠審批效率低。人工智慧工具可以分析即時行為和情境數據,使保險公司能夠進行更精準、更動態的風險評估。
- 人工智慧驅動的風險評估使保險公司能夠根據即時駕駛行為(汽車保險)、生活習慣(健康保險)和財產使用模式(家庭保險)來客製化保費率
例如,
- 瑞士再保險公司採用人工智慧預測模型評估氣候風險,幫助保險公司更準確地承保財產和巨災保險
- Lemonade Inc. 是一家由人工智慧驅動的保險科技公司,它使用行為數據和人工智慧演算法來評估風險並簡化承保流程,從而實現即時保單批准
- 隨著保險業轉向數據驅動和以客戶為中心的模式,人工智慧驅動的風險評估解決方案將繼續提高效率、減少損失、提高保單持有人的滿意度,為市場參與者創造巨大的成長機會
克制/挑戰
“資料隱私和法規遵循”
- 人工智慧驅動的解決方案在保險領域的廣泛應用引發了人們對資料隱私、安全和合規性的擔憂。保險公司依賴大量的個人、財務和行為資料來增強風險評估、理賠處理和詐欺偵測,這使得資料保護成為一項關鍵挑戰。
- 歐洲的《一般資料保護規範》(GDPR) 、美國的《加州消費者隱私法案》(CCPA)以及《健康保險流通與責任法案》(HIPAA)等行業特定法律對保險公司如何收集、處理和儲存客戶資料製定了嚴格的指導方針
- 此外,承保和索賠處理中人工智慧驅動的決策引發了人們對演算法偏見和缺乏透明度的擔憂
例如,
- 中國《個人資訊保護法》對在華經營的外國保險公司實施了嚴格的監管,影響了人工智慧驅動的數據分析和保單定制
- 這些監管和隱私方面的挑戰可能會減緩人工智慧在保險領域的應用,增加合規成本並限制創新。保險公司需要在人工智慧發展與嚴格遵守監管規定之間取得平衡,這可能會導致未來幾年市場擴張放緩,並採取謹慎的人工智慧實施策略。
保險市場範圍內的人工智慧(AI)
市場根據組件、技術、部署模型、企業規模、應用和部門進行細分。
|
分割 |
細分 |
|
按組件 |
|
|
依技術 |
|
|
按部署模型 |
|
|
按企業規模
|
|
|
按應用 |
|
|
按行業 |
|
人工智慧(AI)在保險市場的區域分析
“北美是保險市場人工智慧(AI)的主導地區”
- 北美在保險市場的人工智慧 (AI)領域佔據主導地位,這得益於該地區早期採用人工智慧技術、強大的監管框架以及領先的人工智慧解決方案 提供商的存在
- 由於各大保險公司在人工智慧承保、索賠自動化和詐欺檢測方面投入了大量資金,美國佔據了相當大的份額
- 該地區先進的IT基礎設施和保險公司較高的AI採用率進一步鞏固了其市場領先地位。美國和加拿大的公司正在利用機器學習、自然語言處理和預測分析來提升客戶體驗和營運效率。
- 此外,促進人工智慧透明度和道德使用人工智慧的監管舉措鼓勵保險公司在保持合規性的同時整合人工智慧驅動的決策,鞏固了北美作為市場主導者的地位
“亞太地區預計將實現最高成長率”
- 受政府主導的數位轉型計畫和對人工智慧保險技術投資增加的推動,亞太地區預計將見證保險市場人工智慧(AI)的最高成長率
- 中國、印度和日本等國家正在經歷快速數位化,從而採用人工智慧聊天機器人、自動索賠處理和個人化保單定價模型來提高客戶參與度和營運效率
- 保險科技新創企業的擴張、基於物聯網的風險評估解決方案的日益普及以及對人工智慧驅動的詐欺檢測的需求不斷增長,進一步推動了該地區的市場成長
- 隨著亞太地區的保險公司繼續整合人工智慧驅動的分析、遠端資訊處理和預測模型,該地區為尋求在新興保險市場擴張的人工智慧解決方案提供者提供了重大機會
人工智慧(AI)在保險市場的份額
市場競爭格局按競爭對手提供詳細資料。詳細資訊包括公司概況、公司財務狀況、收入、市場潛力、研發投入、新市場計劃、全球影響力、生產基地和設施、生產能力、公司優勢和劣勢、產品發布、產品寬度和廣度以及應用主導地位。以上提供的數據點僅與公司在市場中的重點相關。
市場中主要的市場領導者有:
- 微軟(美國)
- 印孚瑟斯有限公司(印度)
- Tractable(英國)
- Insurify, Inc.(美國)
- Slice Insurance Technologies Inc(美國)
- Google(美國)
- 甲骨文(美國)
- 亞馬遜網路服務公司(美國)
- IBM(美國)
- Avaamo(美國)
- CAPE Analytics(美國)
- Wipro(印度)
- Acko 普通保險(印度)
- Shift Technology(法國)
- Quantemplate(英國)
- 蘇黎世(瑞士)
- Lemonade Inc.(美國)
全球保險市場人工智慧(AI)的最新發展
- 2023年6月,專注於人工智慧自動化解決方案的Simplifai公司推出了Simplifai InsuranceGPT,這是第一個專為保險業設計的專有通用流程(GPT)工具。這項突破性的創新基於Simplifai基於人工智慧的無程式碼平台,進一步增強了公司強大的業務流程自動化能力。
- 2023年1月,致力於透過基礎設施和諮詢服務實現人工智慧民主化的AI inside公司推出了一項新的DX解決方案。該解決方案利用OCR數位化的半結構化健康證明,促進新保險產品的開發,專為人壽保險行業量身定制。
SKU-
Get online access to the report on the World's First Market Intelligence Cloud
- Interactive Data Analysis Dashboard
- Company Analysis Dashboard for high growth potential opportunities
- Research Analyst Access for customization & queries
- Competitor Analysis with Interactive dashboard
- Latest News, Updates & Trend analysis
- Harness the Power of Benchmark Analysis for Comprehensive Competitor Tracking
目录
1. INTRODUCTION
1.1 OBJECTIVES OF THE STUDY
1.2 MARKET DEFINITION
1.3 OVERVIEW OF GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN INSURANCE MARKET
1.4 CURRENCY AND PRICING
1.5 LIMITATION
1.6 MARKETS COVERED
2. MARKET SEGMENTATION
2.1 KEY TAKEAWAYS
2.2 ARRIVING AT THE GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN INSURANCE MARKET
2.2.1 VENDOR POSITIONING GRID
2.2.2 TECHNOLOGY LIFE LINE CURVE
2.2.3 MARKET GUIDE
2.2.4 COMAPANY MARKET SHARE ANALYSIS
2.2.5 MULTIVARIATE MODELLING
2.2.6 TOP TO BOTTOM ANALYSIS
2.2.7 STANDARDS OF MEASUREMENT
2.2.8 VENDOR SHARE ANALYSIS
2.2.9 DATA POINTS FROM KEY PRIMARY INTERVIEWS
2.2.10 DATA POINTS FROM KEY SECONDARY DATABASES
2.3 GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN INSURANCE MARKET: RESEARCH SNAPSHOT
2.4 ASSUMPTIONS
3. MARKET OVERVIEW
3.1 DRIVERS
3.2 RESTRAINTS
3.3 OPPORTUNITIES
3.4 CHALLENGES
4. EXECUTIVE SUMMARY
5. PREMIUM INSIGHT
5.1 PORTERS FIVE FORCES
5.2 REGULATORY STANDARDS
5.3 TECHNOLOGICAL TRENDS
5.4 PATENT ANALYSIS
5.5 CASE STUDY
5.6 VALUE CHAIN ANALYSIS
5.7 COMPANY COMPARITIVE ANALYSIS
5.8 THE IMPACT OF AI ON THE FUTURE OF INSURANCE
5.9 AI DRIVEN INNOVATION IN THE INSURANCE SECTOR
6. GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN INSURANCE MARKET, BY COMPONENT
6.1 OVERVIEW
6.2 HARDWARE
6.2.1 PROCESSORS
6.2.1.1. MICROPROCESSING UNIT
6.2.1.2. GRAPHICS PROCESSING UNIT
6.2.1.3. FIELD PROGRAMMABLE GATE ARRAYS
6.2.1.4. OTHERS
6.2.2 MEMORY
6.2.3 NETWORK
6.3 SOFTWARE
6.3.1 SOFTWARE TOOL
6.3.1.1. DATA DISCOVERY
6.3.1.2. DATA QUALITY AND DATA GOVERNANCE
6.3.1.3. DATA VISUALIZATION
6.3.2 PLATFORM
6.4 SERVICES
6.4.1 MANAGED SERVICES
6.4.2 PROFESSIONAL SERVICES
7. GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN INSURANCE MARKET, BY TECHNOLOGY
7.1 OVERVIEW
7.2 MACHINE LEARNING
7.2.1 DEEP LEARNING
7.2.1.1. CONVOLUTIONAL NEURAL NETWORK (CNN)
7.2.1.2. RECURRENT NEURAL NETWORK (RNN)
7.2.1.3. GENERATIVE ADVERSARIAL NETWORKS (GAN)
7.2.2 SUPERVISED LEARNING
7.2.3 UNSUPERVISED LEARNING
7.2.4 REINFORCEMENT LEARNING
7.3 NATURAL LANGUAGE PROCESSING (NLP)
7.4 COMPUTER VISION
7.5 CONTEXT AWARENESS
7.6 ROBOTIC AUTOMATION
7.7 OTHERS
8. GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN INSURANCE MARKET, BY DEPLOYMENT MODE
8.1 OVERVIEW
8.2 CLOUD
8.3 ON-PREMISE
9. GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN INSURANCE MARKET, BY ENTERPRISE SIZE
9.1 OVERVIEW
9.2 SMALL & MEDIUM SIZE ENTERPRISE
9.2.1 BY DEPLOYMENT MODE
9.2.1.1. CLOUD
9.2.1.2. ON-PREMISE
9.3 LARGE SIZE ENTERPRISE
9.3.1 BY DEPLOYMENT MODE
9.3.1.1. CLOUD
9.3.1.2. ON-PREMISE
10. GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN INSURANCE MARKET, BY APPLICATION
10.1 OVERVIEW
10.2 CLAIMS MANAGEMENT
10.3 RISK MANAGEMENT AND COMPLIANCE
10.4 CHATBOTS
10.5 FRAUD DETECTION
10.6 CUSTOMER RELATIONSHIP MANAGEMENT
10.7 CYBERSECURITY
10.8 OTHERS
11. GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN INSURANCE MARKET, BY END USER
11.1 OVERVIEW
11.2 INSURANCE COMPANIES
11.3 BROKERS
11.4 AGENTS
12. GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN INSURANCE MARKET, BY SECTOR
12.1 OVERVIEW
12.2 LIFE INSURANCE
12.2.1 BY COMPONENT
12.2.1.1. HARDWARE
12.2.1.2. SOFTWARE
12.2.1.3. SERVICES
12.3 HEALTH INSURANCE
12.3.1 BY COMPONENT
12.3.1.1. HARDWARE
12.3.1.2. SOFTWARE
12.3.1.3. SERVICES
12.4 TITLE INSURANCE
12.4.1 BY COMPONENT
12.4.1.1. HARDWARE
12.4.1.2. SOFTWARE
12.4.1.3. SERVICES
12.5 AUTO INSURANCE
12.5.1 BY COMPONENT
12.5.1.1. HARDWARE
12.5.1.2. SOFTWARE
12.5.1.3. SERVICES
12.6 OTHERS
13. GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN INSURANCE MARKET, BY GEOGRAPHY
13.1 GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN INSURANCE MARKET, (ALL SEGMENTATION PROVIDED ABOVE IS REPRESENTED IN THIS CHAPTER BY COUNTRY)
13.1.1 NORTH AMERICA
13.1.1.1. U.S.
13.1.1.2. CANADA
13.1.1.3. MEXICO
13.1.2 EUROPE
13.1.2.1. GERMANY
13.1.2.2. FRANCE
13.1.2.3. U.K.
13.1.2.4. ITALY
13.1.2.5. SPAIN
13.1.2.6. RUSSIA
13.1.2.7. TURKEY
13.1.2.8. BELGIUM
13.1.2.9. NETHERLANDS
13.1.2.10. NORWAY
13.1.2.11. FINLAND
13.1.2.12. SWITZERLAND
13.1.2.13. DENMARK
13.1.2.14. SWEDEN
13.1.2.15. POLAND
13.1.2.16. REST OF EUROPE
13.1.3 ASIA PACIFIC
13.1.3.1. JAPAN
13.1.3.2. CHINA
13.1.3.3. SOUTH KOREA
13.1.3.4. INDIA
13.1.3.5. AUSTRALIA
13.1.3.6. NEW ZEALAND
13.1.3.7. SINGAPORE
13.1.3.8. THAILAND
13.1.3.9. MALAYSIA
13.1.3.10. INDONESIA
13.1.3.11. PHILIPPINES
13.1.3.12. TAIWAN
13.1.3.13. VIETNAM
13.1.3.14. REST OF ASIA PACIFIC
13.1.4 SOUTH AMERICA
13.1.4.1. BRAZIL
13.1.4.2. ARGENTINA
13.1.4.3. REST OF SOUTH AMERICA
13.1.5 MIDDLE EAST AND AFRICA
13.1.5.1. SOUTH AFRICA
13.1.5.2. EGYPT
13.1.5.3. SAUDI ARABIA
13.1.5.4. U.A.E
13.1.5.5. OMAN
13.1.5.6. BAHRAIN
13.1.5.7. ISRAEL
13.1.5.8. KUWAIT
13.1.5.9. QATAR
13.1.5.10. REST OF MIDDLE EAST AND AFRICA
13.2 KEY PRIMARY INSIGHTS: BY MAJOR COUNTRIES
14. GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN INSURANCE MARKET,COMPANY LANDSCAPE
14.1 COMPANY SHARE ANALYSIS: GLOBAL
14.2 COMPANY SHARE ANALYSIS: NORTH AMERICA
14.3 COMPANY SHARE ANALYSIS: EUROPE
14.4 COMPANY SHARE ANALYSIS: ASIA PACIFIC
14.5 MERGERS & ACQUISITIONS
14.6 NEW PRODUCT DEVELOPMENT AND APPROVALS
14.7 EXPANSIONS
14.8 REGULATORY CHANGES
14.9 PARTNERSHIP AND OTHER STRATEGIC DEVELOPMENTS
15. GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN INSURANCE MARKET, SWOT & DBMR ANALYSIS
16. GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN INSURANCE MARKET, COMPANY PROFILE
16.1 IBM
16.1.1 COMPANY SNAPSHOT
16.1.2 REVENUE ANALYSIS
16.1.3 PRODUCT PORTFOLIO
16.1.4 RECENT DEVELOPMENT
16.2 DAMCO GROUP
16.2.1 COMPANY SNAPSHOT
16.2.2 REVENUE ANALYSIS
16.2.3 PRODUCT PORTFOLIO
16.2.4 RECENT DEVELOPMENT
16.3 MICROSOFT
16.3.1 COMPANY SNAPSHOT
16.3.2 REVENUE ANALYSIS
16.3.3 PRODUCT PORTFOLIO
16.3.4 RECENT DEVELOPMENT
16.4 AMAZON WEB SERVICES, INC.
16.4.1 COMPANY SNAPSHOT
16.4.2 REVENUE ANALYSIS
16.4.3 PRODUCT PORTFOLIO
16.4.4 RECENT DEVELOPMENT
16.5 ORACLE
16.5.1 COMPANY SNAPSHOT
16.5.2 REVENUE ANALYSIS
16.5.3 PRODUCT PORTFOLIO
16.5.4 RECENT DEVELOPMENT
16.6 AVAAMO
16.6.1 COMPANY SNAPSHOT
16.6.2 REVENUE ANALYSIS
16.6.3 PRODUCT PORTFOLIO
16.6.4 RECENT DEVELOPMENT
16.7 SAP
16.7.1 COMPANY SNAPSHOT
16.7.2 REVENUE ANALYSIS
16.7.3 PRODUCT PORTFOLIO
16.7.4 RECENT DEVELOPMENT
16.8 CAPE ANALYTICS
16.8.1 COMPANY SNAPSHOT
16.8.2 REVENUE ANALYSIS
16.8.3 PRODUCT PORTFOLIO
16.8.4 RECENT DEVELOPMENT
16.9 WIPRO
16.9.1 COMPANY SNAPSHOT
16.9.2 REVENUE ANALYSIS
16.9.3 PRODUCT PORTFOLIO
16.9.4 RECENT DEVELOPMENT
16.10 SHIFT TECHNOLOGY
16.10.1 COMPANY SNAPSHOT
16.10.2 REVENUE ANALYSIS
16.10.3 PRODUCT PORTFOLIO
16.10.4 RECENT DEVELOPMENT
16.11 QUANTEMPLATE
16.11.1 COMPANY SNAPSHOT
16.11.2 REVENUE ANALYSIS
16.11.3 PRODUCT PORTFOLIO
16.11.4 RECENT DEVELOPMENT
16.12 ZURICH
16.12.1 COMPANY SNAPSHOT
16.12.2 REVENUE ANALYSIS
16.12.3 PRODUCT PORTFOLIO
16.12.4 RECENT DEVELOPMENT
16.13 LEMONADE, INC.
16.13.1 COMPANY SNAPSHOT
16.13.2 REVENUE ANALYSIS
16.13.3 PRODUCT PORTFOLIO
16.13.4 RECENT DEVELOPMENT
16.14 SLICE INSURANCE TECHNOLOGIES INC
16.14.1 COMPANY SNAPSHOT
16.14.2 REVENUE ANALYSIS
16.14.3 PRODUCT PORTFOLIO
16.14.4 RECENT DEVELOPMENT
16.15 INSURIFY, INC.
16.15.1 COMPANY SNAPSHOT
16.15.2 REVENUE ANALYSIS
16.15.3 PRODUCT PORTFOLIO
16.15.4 RECENT DEVELOPMENT
16.16 INSURMI
16.16.1 COMPANY SNAPSHOT
16.16.2 REVENUE ANALYSIS
16.16.3 PRODUCT PORTFOLIO
16.16.4 RECENT DEVELOPMENT
16.17 PLANCK RESOLUTION LTD.
16.17.1 COMPANY SNAPSHOT
16.17.2 REVENUE ANALYSIS
16.17.3 PRODUCT PORTFOLIO
16.17.4 RECENT DEVELOPMENT
16.18 TRACTABLE LTD.
16.18.1 COMPANY SNAPSHOT
16.18.2 REVENUE ANALYSIS
16.18.3 PRODUCT PORTFOLIO
16.18.4 RECENT DEVELOPMENT
16.19 GOOGLE
16.19.1 COMPANY SNAPSHOT
16.19.2 REVENUE ANALYSIS
16.19.3 PRODUCT PORTFOLIO
16.19.4 RECENT DEVELOPMENT
16.20 INFOSYS LIMITED
16.20.1 COMPANY SNAPSHOT
16.20.2 REVENUE ANALYSIS
16.20.3 PRODUCT PORTFOLIO
16.20.4 RECENT DEVELOPMENT
16.21 FLYREEL, INC. ( A PART OF LEXISNEXIS® RISK SOLUTIONS)
16.21.1 COMPANY SNAPSHOT
16.21.2 REVENUE ANALYSIS
16.21.3 PRODUCT PORTFOLIO
16.21.4 RECENT DEVELOPMENT
16.22 ANADEA, INC
16.22.1 COMPANY SNAPSHOT
16.22.2 REVENUE ANALYSIS
16.22.3 PRODUCT PORTFOLIO
16.22.4 RECENT DEVELOPMENT
16.23 WORKFUSION, INC.
16.23.1 COMPANY SNAPSHOT
16.23.2 REVENUE ANALYSIS
16.23.3 PRODUCT PORTFOLIO
16.23.4 RECENT DEVELOPMENT
NOTE: THE COMPANIES PROFILED IS NOT EXHAUSTIVE LIST AND IS AS PER OUR PREVIOUS CLIENT REQUIREMENT. WE PROFILE MORE THAN 100 COMPANIES IN OUR STUDY AND HENCE THE LIST OF COMPANIES CAN BE MODIFIED OR REPLACED ON REQUEST
17. CONCLUSION
18. QUESTIONNAIRE
19. RELATED REPORTS
20. ABOUT DATA BRIDGE MARKET RESEARCH
研究方法
数据收集和基准年分析是使用具有大样本量的数据收集模块完成的。该阶段包括通过各种来源和策略获取市场信息或相关数据。它包括提前检查和规划从过去获得的所有数据。它同样包括检查不同信息源中出现的信息不一致。使用市场统计和连贯模型分析和估计市场数据。此外,市场份额分析和关键趋势分析是市场报告中的主要成功因素。要了解更多信息,请请求分析师致电或下拉您的询问。
DBMR 研究团队使用的关键研究方法是数据三角测量,其中包括数据挖掘、数据变量对市场影响的分析和主要(行业专家)验证。数据模型包括供应商定位网格、市场时间线分析、市场概览和指南、公司定位网格、专利分析、定价分析、公司市场份额分析、测量标准、全球与区域和供应商份额分析。要了解有关研究方法的更多信息,请向我们的行业专家咨询。
可定制
Data Bridge Market Research 是高级形成性研究领域的领导者。我们为向现有和新客户提供符合其目标的数据和分析而感到自豪。报告可定制,包括目标品牌的价格趋势分析、了解其他国家的市场(索取国家列表)、临床试验结果数据、文献综述、翻新市场和产品基础分析。目标竞争对手的市场分析可以从基于技术的分析到市场组合策略进行分析。我们可以按照您所需的格式和数据样式添加您需要的任意数量的竞争对手数据。我们的分析师团队还可以为您提供原始 Excel 文件数据透视表(事实手册)中的数据,或者可以帮助您根据报告中的数据集创建演示文稿。

