Global Cloud Ai Market
市场规模(十亿美元)
CAGR :
%
USD
103.93 Billion
USD
931.02 Billion
2025
2033
| 2026 –2033 | |
| USD 103.93 Billion | |
| USD 931.02 Billion | |
|
|
|
|
全球雲端人工智慧市場細分,按技術(深度學習、機器學習、自然語言處理及其他)、類型(解決方案和服務)、垂直行業(醫療保健、零售、銀行、金融服務和保險、IT與電信、政府、製造業、汽車與交通運輸及其他)劃分——行業趨勢及至2033年的預測
全球雲端人工智慧市場規模及成長率是多少?
- 2025年全球雲端人工智慧市場規模為1,039.3億美元 ,預估 至2033年將達9,310.2億美元,預測期內複合年增長率 為31.53%。
- 企業對雲端人工智慧解決方案的日益普及、機器學習和深度學習應用部署的不斷增加、對即時數據分析需求的成長以及物聯網設備和智慧型應用的激增,都是推動雲端人工智慧市場成長的關鍵因素。
雲端運算人工智慧市場的主要結論有哪些?
- 醫療保健、銀行、金融服務和保險 (BFSI)、零售和製造業等行業對人工智慧驅動的分析、虛擬助理和自動化解決方案的需求不斷增長,為雲端人工智慧市場創造了巨大的機會。
- 雲端基礎設施的擴展,以及企業數位轉型措施的增加,正在推動全球市場對雲端技術的接受度。
- 缺乏熟練的人工智慧專業人才、高昂的部署成本以及與傳統系統整合方面的挑戰,都可能成為限制因素,限制市場成長的全部潛力。
- 北美在2025年將佔據雲端人工智慧市場的主導地位,營收份額達36.32%,這主要得益於雲端人工智慧平台的快速普及、半導體技術的強勁創新、嵌入式系統的發展,以及美國和加拿大眾多IT和技術中心的存在。
- 亞太地區預計將在2026年至2033年間實現9.14%的複合年增長率,成為成長最快的地區,這主要得益於雲端基礎設施的快速擴張、強大的IT服務生態系統、不斷增長的企業數位化以及人工智慧在中國、日本、印度、韓國和東南亞地區日益普及。
- 到2025年,深度學習領域將佔據市場主導地位,市場份額達到42.5%,這主要得益於卷積神經網路、循環神經網路以及先進的影像辨識和電腦視覺應用在醫療保健、汽車和工業自動化等領域的廣泛應用。
報告範圍和雲端人工智慧市場細分
|
屬性 |
雲端運算人工智慧關鍵市場洞察 |
|
涵蓋部分 |
|
|
覆蓋國家/地區 |
北美洲
歐洲
亞太
中東和非洲
南美洲
|
|
主要市場參與者 |
|
|
市場機遇 |
|
|
加值資料資訊集 |
除了對市場狀況(如市場價值、成長率、細分、地理覆蓋範圍和主要參與者)的洞察之外,Data Bridge Market Research 精心編制的市場報告還包括深入的專家分析、定價分析、品牌份額分析、消費者調查、人口統計分析、供應鏈分析、價值鏈分析、原材料/消耗品概述、供應商選擇標準、PESTLE 分析、波特五力分析和監管框架。 |
雲端人工智慧市場的主要趨勢是什麼?
“日益普及基於雲端、可擴展和人工智慧驅動的解決方案”
- 雲端人工智慧市場正見證著雲端原生人工智慧平台、機器學習服務和可擴展基礎設施的蓬勃發展,這些平台和服務旨在支援即時分析、預測建模和智慧自動化。
- 供應商正在推出人工智慧即服務 (AIaaS) 產品、預訓練模型以及低程式碼/無程式碼開發平台,以加速企業和開發人員的部署。
- 對經濟高效、靈活且安全的雲端人工智慧平台的需求不斷增長,正在推動IT部門、研發中心、醫療保健、金融和零售業等領域的應用。
- 例如,微軟、Google、IBM 和 AWS 等公司已經利用自動化機器學習、GPU 加速運算和進階自然語言處理工具增強了其雲端人工智慧解決方案。
- 對即時洞察、預測分析和人工智慧驅動的決策日益增長的需求,正在加速向雲端整合人工智慧生態系統的轉變。
- 隨著企業不斷進行數位轉型,雲端人工智慧解決方案對於可擴展、即時和智慧營運仍然至關重要。
雲端人工智慧市場的主要驅動因素是什麼?
- 企業和中小企業對人工智慧驅動的分析、自動化和預測性決策的需求不斷增長,正在推動市場成長。
- 例如,到2025年,微軟、谷歌和IBM等領先公司將擴展其雲端人工智慧產品,增加自然語言處理、電腦視覺和機器學習API,以支援進階分析。
- 物聯網、大數據、機器人、自主系統和數位平台的日益普及,正在推動北美、歐洲和亞太地區對雲端人工智慧服務的需求。
- 基於GPU的處理、分散式雲端基礎設施和AI模型優化的進步提高了可擴展性、效能和部署效率。
- 人工智慧模型在醫療診斷、金融風險管理、零售個人化和工業自動化等領域的日益普及,正在推動雲端人工智慧解決方案的採用。
- 在企業數位轉型加速、政府人工智慧計畫推進以及持續研發投入的推動下,雲端人工智慧市場預計將迎來強勁的長期成長。
哪些因素正在阻礙雲端人工智慧市場的成長?
- 企業級雲端人工智慧平台的高昂實施成本、基礎設施要求和訂閱費用限制了小型企業對其的採用。
- 例如,在2024年至2025年期間,人工智慧模型部署的複雜性、熟練的人工智慧工程師的短缺以及對資料隱私的擔憂,都加劇了多個組織在營運方面的挑戰。
- 將雲端人工智慧與傳統IT系統整合、確保資料安全以及管理合規性,都會增加技術和營運的複雜性。
- 新興市場對雲端人工智慧功能、模型優化和服務整合的認知不足,減緩了其普及應用。
- 來自本地部署人工智慧解決方案、開源框架和混合雲平台的競爭造成了價格壓力,並限制了產品差異化。
- 為了因應這些挑戰,各公司正致力於提高部署成本效益、開展培訓專案、實現模型自動化以及進行雲端原生集成,以提高雲端人工智慧在全球的普及率。
雲端人工智慧市場是如何細分的?
市場按技術、類型和垂直行業進行細分。
• 透過技術
根據技術劃分,雲端人工智慧市場可分為深度學習、機器學習、自然語言處理 (NLP) 和其他。深度學習領域預計將在 2025 年佔據市場主導地位,市佔率高達 42.5%,這主要得益於卷積神經網路、循環神經網路以及先進的影像辨識和電腦視覺應用在醫療保健、汽車和工業自動化等領域的廣泛應用。深度學習框架能夠提供高精度的預測分析、人工智慧驅動的決策以及更強大的模型訓練能力,使其成為企業實現智慧自動化和雲端規模人工智慧部署的關鍵工具。
預計從2026年到2033年,自然語言處理(NLP)領域將以最快的複合年增長率增長,這主要得益於IT、銀行、金融服務和保險(BFSI)以及電子商務等垂直行業對人工智能驅動的聊天機器人、語音助理、情感分析和語言翻譯工具日益增長的需求。人工智慧驅動的對話平台和文字探勘解決方案的日益普及,正在加速全球NLP技術的應用。
• 依類型
依類型劃分,雲端人工智慧市場可分為解決方案與服務兩大類。解決方案類市場佔據主導地位,預計2025年將佔據47.1%的市場份額,這主要得益於人工智慧模型、預訓練框架和雲端平台在企業IT基礎設施中的廣泛整合。雲端人工智慧解決方案提供端到端的自動化、預測洞察和進階分析功能,可協助企業提高效率、降低營運成本並擴展人工智慧應用。
預計從2026年到2033年,服務板塊將以最快的複合年增長率成長,這主要得益於人工智慧諮詢、模型部署服務、培訓和維護服務日益普及。託管式人工智慧服務和人工智慧即服務(AIaaS)模式正日益幫助中小企業在無需大量前期投資的情況下利用高階分析技術。數位轉型計畫、雲端遷移和人工智慧應用的持續成長,推動了多個地區對雲端人工智慧服務的需求。
• 透過垂直
根據行業垂直領域,雲端人工智慧市場可細分為醫療保健、零售、銀行、金融服務和保險 (BFSI)、IT 和電信、政府、製造業、汽車和交通運輸以及其他行業。醫療保健領域預計將在 2025 年佔據市場主導地位,市場份額達 40.3%,這主要得益於人工智慧在診斷、醫學影像、患者監測、藥物研發和個人化治療方案製定等方面的廣泛應用。雲端人工智慧能夠對大型醫療保健資料集進行可擴展的處理,加速研發進程,並支援即時臨床決策。
預計2026年至2033年間,零售業將以最快的複合年增長率成長,這主要得益於人工智慧驅動的需求預測、個人化行銷、庫存優化和客戶情緒分析等技術的廣泛應用。對人工智慧電商解決方案、聊天機器人和推薦引擎的投資不斷增加,正在推動全球零售企業快速部署這些技術,從而提升消費者參與度和營運效率。
哪個地區在雲端人工智慧市場佔最大份額?
- 北美在2025年將佔據雲端人工智慧市場的主導地位,營收份額高達36.32%,這主要得益於雲端人工智慧平台的快速普及、半導體技術的強勁創新、嵌入式系統的發展,以及美國和加拿大眾多IT和技術中心的存在。企業對人工智慧基礎設施、數位轉型計畫和高效能運算的持續投入,也推動了雲端人工智慧在醫療保健、銀行、金融服務和保險(BFSI)、零售和汽車等產業的部署。
- 北美領先企業正在提供先進的雲端人工智慧解決方案,這些解決方案整合了機器學習框架、深度學習模型支援和人工智慧即服務 (AIaaS) 功能,從而鞏固了該地區的技術優勢。對物聯網、邊緣人工智慧和分析平台的持續投資將進一步推動市場的長期擴張。
- 高度集中的工程人才、廣泛的研發中心和強大的創新生態系統,鞏固了該地區在雲端人工智慧應用和服務開發方面的領先地位。
美國雲端人工智慧市場洞察
美國是北美最大的人工智慧市場貢獻者,這得益於企業對人工智慧的廣泛應用、政府和私營部門的人工智慧計畫以及完善的雲端基礎設施。人工智慧驅動的分析、深度學習應用和人工智慧即服務(AIaaS)模式在醫療保健、零售、銀行、金融服務和保險(BFSI)以及IT產業的快速部署,進一步推高了市場需求。主要技術供應商的存在、高額的研發投入以及先進的人工智慧生態系統,也進一步促進了市場成長。
加拿大雲端人工智慧市場洞察
加拿大對區域成長貢獻顯著,這主要得益於雲端運算的廣泛應用、政府支持的人工智慧計畫以及企業數位轉型。機器學習、深度學習和自然語言處理等人工智慧解決方案在醫療保健、金融和電子商務領域的日益普及,進一步推動了市場接受度。熟練的勞動力資源和完善的創新支援計劃,加速了人工智慧在企業中的整合。
亞太雲人工智慧市場
亞太地區預計在2026年至2033年間實現9.14%的複合年增長率,成為成長最快的地區。這主要得益於雲端基礎設施的快速擴張、強大的IT服務生態系統、不斷增長的企業數位化以及人工智慧在中國、日本、印度、韓國和東南亞地區日益普及。消費性電子、汽車、醫療保健和製造業等領域人工智慧部署的不斷增加,推動了該地區對雲端人工智慧解決方案的需求。 5G、物聯網和邊緣運算的成長進一步加速了可擴展人工智慧平台和分析工具的普及。
中國雲端人工智慧市場洞察
中國是亞太地區最大的人工智慧貢獻者,這得益於政府支持的人工智慧計畫、世界一流的雲端基礎設施以及企業對人工智慧的廣泛應用。深度學習模式、自然語言處理應用和人工智慧即服務(AIaaS)平台的蓬勃發展,為大規模人工智慧整合提供了有力支撐。本地雲端服務供應商和具有競爭力的價格進一步擴大了市場滲透率。
日本雲端人工智慧市場洞察
得益於先進的IT基礎設施、精密製造業和企業對人工智慧的廣泛應用,日本經濟呈現穩定成長態勢。製造業和服務業對人工智慧驅動的自動化、預測分析和數位轉型的重視,進一步鞏固了其長期市場擴張的勢頭。
印度雲端人工智慧市場洞察
在雲端運算遷移、新創企業活躍以及政府支持的人工智慧計畫的推動下,印度正崛起為重要的成長中心。銀行、金融服務和保險(BFSI)、醫療保健、資訊科技和電子商務等行業對人工智慧解決方案的快速應用,以及不斷增長的研發投入和數位基礎設施的擴張,共同推動了區域市場的成長。
韓國雲端人工智慧市場洞察
韓國對人工智慧驅動的分析、深度學習和雲端運算解決方案的需求強勁,因此貢獻顯著。消費性電子、汽車和工業自動化產業的高應用率支撐了區域市場的持續成長。
雲端人工智慧市場的主要公司有哪些?
雲端人工智慧產業主要由一些成熟企業引領,其中包括:
- 蘋果公司(美國)
- 谷歌公司(美國)
- IBM公司(美國)
- 英特爾公司(美國)
- 微軟(美國)
- MicroStrategy公司(美國)
- 英偉達公司(美國)
- 甲骨文公司(美國)
- Qlik Technologies Inc.(美國)
- Salesforce.com 公司(美國)
- 中興通訊股份有限公司(中國)
全球雲端人工智慧市場近期有哪些發展動態?
- 2024 年 9 月,Salesforce 擴展了與 Google Cloud 的合作關係,推出了 Agentforce Agents,從而實現了 Salesforce Customer 360 和 Google Workspace 應用之間的安全協作。此次更新增強了現有集成,使雙方客戶能夠在日常應用中無縫部署自主代理,同時確保強大的隱私和用戶資料保護,從而提升企業 AI 生產力。
- 2024年8月,IBM和英特爾宣布合作,將在IBM Cloud上以服務形式部署英特爾Gaudi 3 AI加速器,並計劃於2025年初正式上線。此次合作旨在幫助企業高效擴展AI項目,同時保持高可靠性和安全性。 Gaudi 3將整合到IBM Watson的AI和資料平台中,使IBM Cloud成為首個同時為混合環境和本地環境提供Gaudi 3的雲端服務供應商,從而增強雲端AI能力。
- 2024年7月,AWS推出了AWS GenAI Lofts,這是一項旨在促進生成式人工智慧創新的全球性計畫。該計劃在全球主要人工智慧中心設立臨時空間,為開發者、企業和愛好者提供創作、交流和學習的機會。該計劃包含由人工智慧專家、社區團體和AWS合作夥伴(例如Anthropic、Cerebral Valley和Weights & Biases)主持的研討會、非正式講座和實踐課程,旨在推動生成式人工智慧在全球的應用。
- IBM 於 2024 年 5 月推出了適用於 IBM API Connect 的 AI 網關,並於 2024 年 6 月正式上線。該功能使用戶能夠透過單一控制點存取 AI 服務,安全地將內部應用程式與外部 AI API 連接起來。它還能監控 AI API 的使用情況,並提供可操作的洞察,幫助使用者選擇最佳的大型語言模型 (LLM),從而提高企業 AI 部署效率。
- 2024年4月,NVIDIA收購了以色列公司Run:AI,該公司專注於以人工智慧基礎設施為導向的Kubernetes技術。 Run:AI的技術能夠提升人工智慧工作負載的GPU利用率,擴展NVIDIA的生態系統,提高人工智慧的運作效率,並推進Kubernetes在雲端原生人工智慧架構中的集成,從而鞏固NVIDIA在人工智慧基礎設施解決方案領域的領先地位。
SKU-
Get online access to the report on the World's First Market Intelligence Cloud
- Interactive Data Analysis Dashboard
- Company Analysis Dashboard for high growth potential opportunities
- Research Analyst Access for customization & queries
- Competitor Analysis with Interactive dashboard
- Latest News, Updates & Trend analysis
- Harness the Power of Benchmark Analysis for Comprehensive Competitor Tracking
研究方法
数据收集和基准年分析是使用具有大样本量的数据收集模块完成的。该阶段包括通过各种来源和策略获取市场信息或相关数据。它包括提前检查和规划从过去获得的所有数据。它同样包括检查不同信息源中出现的信息不一致。使用市场统计和连贯模型分析和估计市场数据。此外,市场份额分析和关键趋势分析是市场报告中的主要成功因素。要了解更多信息,请请求分析师致电或下拉您的询问。
DBMR 研究团队使用的关键研究方法是数据三角测量,其中包括数据挖掘、数据变量对市场影响的分析和主要(行业专家)验证。数据模型包括供应商定位网格、市场时间线分析、市场概览和指南、公司定位网格、专利分析、定价分析、公司市场份额分析、测量标准、全球与区域和供应商份额分析。要了解有关研究方法的更多信息,请向我们的行业专家咨询。
可定制
Data Bridge Market Research 是高级形成性研究领域的领导者。我们为向现有和新客户提供符合其目标的数据和分析而感到自豪。报告可定制,包括目标品牌的价格趋势分析、了解其他国家的市场(索取国家列表)、临床试验结果数据、文献综述、翻新市场和产品基础分析。目标竞争对手的市场分析可以从基于技术的分析到市场组合策略进行分析。我们可以按照您所需的格式和数据样式添加您需要的任意数量的竞争对手数据。我们的分析师团队还可以为您提供原始 Excel 文件数据透视表(事实手册)中的数据,或者可以帮助您根据报告中的数据集创建演示文稿。

