Global Cognitive Computing Market
市场规模(十亿美元)
CAGR :
%
USD
27.50 Billion
USD
247.38 Billion
2024
2032
| 2025 –2032 | |
| USD 27.50 Billion | |
| USD 247.38 Billion | |
|
|
|
|
全球認知運算市場細分,按技術(自然語言處理、機器學習、自動推理等)、組件(平台和服務)、規模(中小型企業和大型企業)、技術(機器學習、人機互動、自然語言處理和深度學習)、業務功能(人力資源、法律、財務、營銷和廣告)、部署類型(雲端和本地)、垂直(BFSI、消費品和零售、航空航天和國防IT、能源和電力、旅遊和觀光、媒體和娛樂、教育和研究等)、應用程式(診斷 API、機器人、網路安全、農場機械化、社交媒體監控、自動駕駛汽車、遊戲、視訊監控、電子學習、IT 基礎設施管理和供應鏈管理)- 行業趨勢和預測到 2032 年
認知運算市場規模
- 2024 年全球認知運算市場規模為275 億美元 ,預計 到 2032 年將達到 2,473.8 億美元,預測期內 複合年增長率為 31.6%。
- 市場成長主要得益於企業越來越多地採用人工智慧 (AI) 和機器學習技術、對數據驅動決策的需求不斷增長以及對複雜業務流程自動化的需求
- 醫療保健、BFSI、零售和製造等行業的快速數字化正在推動認知運算解決方案的集成,以提高營運效率、改善客戶體驗並實現預測分析
認知運算市場分析
- 認知運算正在透過提供能夠模擬人類思維過程的智慧解決方案來解決業務挑戰,從而改變企業格局。這些系統結合了自然語言處理 (NLP)、機器學習和數據分析,能夠提供切實可行的洞察。
- 市場正在見證認知助理、聊天機器人和推薦引擎的日益普及,這些技術可以提高客戶參與度、提高生產力並降低營運成本
- 北美在認知運算市場佔據主導地位,2024 年其收入份額最高,為 35.4%,這得益於人工智慧技術的快速普及、數位轉型計畫的不斷增長以及企業對即時數據驅動洞察的需求不斷增長
- 預計亞太地區將見證全球認知運算市場的最高成長率,這得益於中國、日本和韓國等國家城市化進程加快、技術進步、企業採用率不斷提高以及對智慧城市和基於人工智慧的工業解決方案的投資
- 機器學習領域在2024年佔據了最大的市場收入份額,這得益於其分析海量資料集、檢測模式以及為各行各業提供可操作洞察的能力。基於機器學習的認知運算解決方案通常提供預測分析、自動化和決策支援功能,使其成為尋求資料驅動效率的企業的首選。
報告範圍和認知計算市場細分
|
屬性 |
認知運算關鍵市場洞察 |
|
涵蓋的領域 |
|
|
覆蓋國家 |
北美洲
歐洲
亞太
中東和非洲
南美洲
|
|
主要市場參與者 |
|
|
市場機會 |
|
|
加值資料資訊集 |
除了市場價值、成長率、市場區隔、地理覆蓋範圍、市場參與者和市場情景等市場洞察之外,Data Bridge 市場研究團隊策劃的市場報告還包括深入的專家分析、進出口分析、定價分析、生產消費分析和 pestle 分析。 |
認知運算市場趨勢
人工智慧驅動的決策和認知解決方案的興起
- 認知運算的日益普及,正在透過提供即時數據驅動的洞察和智慧自動化來改變企業營運。這些解決方案使企業能夠優化工作流程,減少營運效率低下,並做出明智的決策,從而提高生產力和業務成果。
- 複雜產業對人工智慧分析的旺盛需求正在加速機器學習演算法、自然語言處理和模式識別工具的部署。這些技術在金融、醫療保健和製造業領域尤其有效,有助於減少人為錯誤並提高決策速度。
- 現代認知運算平台的可擴展性和適應性使其對大型企業和中小企業都具有吸引力。企業無需大量的前期 IT 投資,即可從預測分析、個人化推薦和自動化功能中受益,最終提升營運效率。
- 例如,2023 年,北美幾家跨國銀行實施了用於詐欺偵測和風險管理的認知運算解決方案,從而加快了決策速度,提高了合規性,並減少了財務損失
- 雖然認知運算正在加速智慧運營,但其影響取決於持續的人工智慧模型改進、與傳統系統的整合以及員工培訓。供應商必須專注於可自訂的解決方案、強大的資料管理和安全的部署策略,才能充分利用這一日益增長的需求。
認知運算市場動態
司機
對即時數據驅動洞察和人工智慧整合的需求不斷增長
- 人工智慧應用和數位轉型計畫的激增,正在推動企業採用認知運算解決方案。企業尋求更快、更準確的決策能力,以保持競爭力。對數據驅動策略的日益依賴,正促使企業整合認知系統,以優化營運並進行策略規劃。
- 越來越多的組織認識到認知運算的營運優勢,例如預測分析、流程自動化和提升客戶參與度。這些優勢支持金融、醫療保健、IT 和製造業的採用。更高的工作流程效率、更少的錯誤以及更強大的預測能力進一步推動了認知運算在多個行業的部署。
- 政府計畫和私營部門推動人工智慧和自動化的舉措進一步刺激了需求。對數位轉型和智慧技術的監管支持鼓勵企業實施認知解決方案。此外,公私合作和人工智慧研究資金的投入加速了認知平台的創新和應用。
- 例如,2022年,歐洲多個醫療網路採用了人工智慧驅動的認知平台,以優化病患照護管理,減少營運瓶頸,進而提高效率和決策速度。這些實施還實現了預測性患者結果分析,並簡化了醫院運作。
- 雖然人工智慧驅動的洞察正在推動成長,但市場仍需要在模型準確性、數據處理能力以及與企業IT系統的無縫整合方面進行創新,以實現更廣泛的應用。為了滿足不斷變化的企業需求,自然語言處理、機器學習和分析框架的持續改進至關重要。
克制/挑戰
認知運算解決方案成本高且整合複雜
- 高階認知運算平台的高成本(包括人工智慧模型、分析工具和硬體需求)限制了中小企業的採用。價格仍然是一個主要障礙,尤其是在發展中地區。成本因素還包括軟體許可證、雲端基礎設施和持續維護,這使得小型企業的投資決策更具挑戰性。
- 一些組織的技術專長和IT基礎設施有限,限制了認知運算解決方案的有效部署和運作。缺乏訓練有素的人員來管理人工智慧演算法和資料管道,導致整合延遲。組織通常需要專門的培訓計劃和外部諮詢,以確保順利部署和使用。
- 將認知運算與現有企業系統整合可能非常複雜,需要額外的軟體、網路升級和持續的支援。這會增加新解決方案的部署成本和上市時間。與傳統系統的兼容性問題、資料孤島和網路安全問題進一步加劇了複雜性。
- 例如,2023年,亞洲幾家中型製造公司報告稱,由於相容性和整合問題,認知分析平台的實施出現延遲,這凸顯了對強大支援和可擴展解決方案的需求。這些延遲也影響了即時分析能力,並阻礙了策略決策。
- 儘管認知技術不斷發展,但解決成本、整合和營運挑戰仍然至關重要。市場利害關係人必須專注於使用者友善的平台、模組化部署和安全的資料管理,以釋放長期市場潛力。採用標準化 API、基於雲端的解決方案和靈活的部署模型可以緩解整合障礙,加速市場成長。
認知運算市場範圍
市場根據技術、組件、規模、業務功能、部署類型、垂直和應用進行細分。
- 依技術
根據技術,認知運算市場細分為自然語言處理 (NLP)、機器學習 (ML)、自動推理和其他。機器學習領域在 2024 年佔據了最大的市場收入份額,這得益於其分析大數據集、檢測模式以及為各行各業提供可操作洞察的能力。支援機器學習的認知運算解決方案通常提供預測分析、自動化和決策支援功能,使其成為尋求資料驅動效率的企業的首選。
預計自然語言處理 (NLP) 領域將在 2025 年至 2032 年間實現最快成長,這得益於人工智慧對話介面、文字分析和語音辨識應用需求的不斷增長。 NLP 解決方案尤其受歡迎,因為它們能夠增強客戶參與度、實現溝通自動化,並從非結構化資料中提取有意義的洞察,通常作為認知系統的主要介面。
- 按組件
根據組件,市場細分為平台和服務。由於提供端到端分析、人工智慧建模和企業部署功能的整合認知運算平台的廣泛採用,平台部門在 2024 年佔據了最大的收入份額。
預計服務業將在 2025 年至 2032 年間實現最快的成長率,這得益於對託管認知服務、諮詢和技術支援的需求不斷增長,以幫助企業在無需大量前期投資的情況下優化人工智慧和分析計劃。
- 按尺寸
根據規模,市場分為中小型企業 (SMB) 和大型企業。大型企業在 2024 年佔據主導地位,因為它們更多地採用人工智慧驅動的認知平台來提高營運效率、降低風險和進行策略決策。
由於針對尋求競爭優勢的成本敏感型企業量身定制的可擴展、基於雲端的認知運算解決方案的日益普及,預計中小企業將在 2025 年至 2032 年間實現最快的成長率。
- 按業務功能
根據業務功能,市場細分為人力資源、法律、財務以及行銷和廣告。 2024年,財務部門佔據了最大的收入份額,這得益於認知運算在詐欺偵測、預測分析和自動報告方面的應用。
預計行銷和廣告領域將在 2025 年至 2032 年間見證最快的成長率,這得益於人工智慧驅動的消費者洞察、有針對性的活動和即時參與度分析。
- 依部署類型
根據部署類型,市場細分為雲端部署和本地部署。雲端部署因其可擴展性、成本效益以及跨多個業務部門和地區的易於集成,在 2024 年佔據主導地位。
預計從 2025 年到 2032 年,內部部署將出現最快的成長率,這得益於企業對高資料安全性、客製化和對認知運算基礎設施的控制的要求。
- 按垂直
按垂直產業細分,市場可分為商業、金融服務和保險 (BFSI)、消費品和零售、航空航太和國防、電信和 IT、能源和電力、旅遊和觀光、媒體和娛樂、教育和研究以及其他。由於人工智慧和認知運算在風險管理、客戶服務自動化和法規遵循方面的廣泛應用,BFSI 在 2024 年佔據主導地位。
預計消費品和零售業將在 2025 年至 2032 年間見證最快的成長率,這得益於人工智慧驅動的個人化、供應鏈優化和庫存管理解決方案。
- 按應用
根據應用領域,市場細分為診斷 API、機器人、網路安全、農業機械化、社群媒體監控、自動駕駛汽車、遊戲、視訊監控、電子學習、IT 基礎設施管理和供應鏈管理。 IT 基礎設施管理在 2024 年佔據最大份額,這得益於對人工智慧驅動的監控、預測性維護和自動化資源分配的需求。
預計診斷 API 和社群媒體監控將在 2025 年至 2032 年間見證最快的成長率,這得益於人工智慧在即時分析、客戶洞察和智慧自動化方面的日益普及。
認知運算市場區域分析
- 北美在認知運算市場佔據主導地位,2024 年其收入份額最高,為 35.4%,這得益於人工智慧技術的快速普及、數位轉型計畫的不斷增長以及企業對即時數據驅動洞察的需求不斷增長
- 該地區的組織高度重視認知運算解決方案提供的營運效率、預測分析和自動化功能,從而促進了 BFSI、醫療保健和 IT 等領域的廣泛部署
- 人工智慧研究的高額投資、完善的 IT 基礎設施和熟練的勞動力進一步支持了這一應用,使北美成為認知運算創新和企業整合的關鍵樞紐
美國認知運算市場洞察
2024年,美國認知運算市場佔據了北美最大的收入份額,這得益於人工智慧平台的早期採用、企業對智慧自動化的強勁需求以及政府支援技術整合的舉措。企業越來越多地利用認知運算進行流程優化、詐欺偵測、客戶互動和進階分析。基於雲端的認知平台的日益普及,加上人工智慧賦能的商業智慧工具,正在顯著促進市場擴張。
歐洲認知運算市場洞察
預計歐洲認知運算市場將在2025年至2032年間實現最快的成長,主要得益於人工智慧研究投入的增加、各行各業智慧自動化的普及以及監管部門對數位創新的支援。對增強分析、預測性維護和營運效率的需求激增,正在推動金融、製造和醫療保健等行業的應用。歐洲企業也正在投資基於雲端的認知解決方案和人工智慧驅動的業務流程最佳化,從而推動商業和公共部門的成長。
英國認知運算市場洞察
英國認知運算市場預計將在2025年至2032年間實現最快成長,這得益於政府推動人工智慧應用的舉措、企業日益重視數據驅動決策以及數位轉型專案的興起。金融服務、醫療保健和IT產業正越來越多地部署認知運算平台,以提高營運效率、預測分析能力和客戶參與度。英國強大的人工智慧研究生態系統和數位基礎設施將進一步支持市場擴張。
德國認知運算市場洞察
預計在2025年至2032年期間,德國認知運算市場將迎來最快的成長速度,這得益於工業數位化、人工智慧和機器學習技術的日益普及以及政府對創新的支持。製造業、汽車業和醫療保健行業的企業正越來越多地利用認知計算進行預測分析、流程自動化和數據驅動的洞察。對永續的人工智慧技術的關注與當地消費者的期望和企業效率目標相契合。
亞太認知運算市場洞察
預計亞太地區認知運算市場將在2025年至2032年間實現最快成長,這得益於快速的城市化進程、人工智慧技術投資的不斷增長以及中國、日本和印度等國家日益增多的數位轉型舉措。商業、金融服務和保險業(BFSI)、零售業和醫療保健行業的企業正在採用認知運算來增強分析能力、自動化程度和營運效率。此外,政府推動人工智慧融合的舉措以及該地區作為技術服務中心的崛起,也正在推動認知運算的更廣泛應用。
日本認知運算市場洞察
由於日本注重高科技創新、數位轉型以及對智慧自動化的需求,預計日本認知運算市場將在2025年至2032年間實現最快的成長。企業越來越多地部署認知平台,以增強決策能力、改善客戶體驗並優化業務流程。日本人口老化以及對生產力提升的重視進一步推動了公共和私營部門的認知運算應用。
中國認知運算市場洞察
2024年,中國認知運算市場佔據亞太地區最大的市場收入份額,這得益於技術的快速普及、政府大力推動人工智慧的舉措以及企業對智慧系統的持續投資。各大企業正利用認知運算進行預測分析、流程最佳化和增強決策能力,涉及金融、醫療保健和IT等領域。雲端人工智慧平台和本土技術供應商的成長,進一步推動了中國市場的擴張。
認知運算市場佔有率
認知運算產業主要由知名公司主導,包括:
- IBM(美國)
- 微軟(美國)
- 英特爾公司(美國)
- 認知運算聯盟(美國)
- Enterra Solutions(美國)
- Numenta(美國)
- Vicarious(美國)
- DeepMind(英國)
- SparkCognition(美國)
- TIBCO軟體公司(美國)
- NakaTech(美國)
- Wipro有限公司(印度)
- Marlabs(美國)
- SAP SE(德國)
- 惠普企業開發有限公司(美國)
- 認知量表(美國)
- oppScience(美國)
- e-Zest Solution(印度)
全球認知運算市場的最新發展
- 2024年5月,Wipro(印度)與微軟(美國)合作,為金融服務領域推出了基於人工智慧的生成式認知助手,旨在增強市場情報、加快客戶入職並簡化貸款發放流程。這些解決方案利用 Microsoft Azure OpenAI 和 Document Intelligence,減少文書工作,提供及時洞察,並提升金融專業人士的整體使用者體驗,從而提高效率並促進人工智慧在金融領域的應用。
- 2024年5月,IBM(美國)和SAP SE(德國)宣布擴大合作,專注於生成式人工智慧和產業專用雲端解決方案,旨在將人工智慧融入SAP業務流程。此次合作將IBM的混合雲和人工智慧專業知識與SAP的企業解決方案結合,賦能多個產業的創新,加速數位轉型,並為企業帶來更高的商業價值。
- 2024年2月,微軟(美國)與Mistral AI(法國)合作,推動AI創新和大型語言模型開發,並利用Azure基礎架構部署Mistral的模型即服務。此次合作旨在提供商業機會,加速AI研究,並使企業更容易獲得複雜的AI模型,從而促進可擴展AI解決方案的市場採用。
- 2023年3月,美國Nuance Communications推出了Dragon Ambient eXperience (DAX) Express,這是一款整合OpenAI GPT-4的語音醫療記錄應用程式。該工具透過捕捉醫病互動、在幾秒鐘內產生草稿記錄、減輕管理負擔、提高準確性並解決醫生倦怠問題,實現了臨床記錄的自動化,從而徹底改變了人工智慧在醫療記錄領域的應用。
SKU-
Get online access to the report on the World's First Market Intelligence Cloud
- Interactive Data Analysis Dashboard
- Company Analysis Dashboard for high growth potential opportunities
- Research Analyst Access for customization & queries
- Competitor Analysis with Interactive dashboard
- Latest News, Updates & Trend analysis
- Harness the Power of Benchmark Analysis for Comprehensive Competitor Tracking
研究方法
数据收集和基准年分析是使用具有大样本量的数据收集模块完成的。该阶段包括通过各种来源和策略获取市场信息或相关数据。它包括提前检查和规划从过去获得的所有数据。它同样包括检查不同信息源中出现的信息不一致。使用市场统计和连贯模型分析和估计市场数据。此外,市场份额分析和关键趋势分析是市场报告中的主要成功因素。要了解更多信息,请请求分析师致电或下拉您的询问。
DBMR 研究团队使用的关键研究方法是数据三角测量,其中包括数据挖掘、数据变量对市场影响的分析和主要(行业专家)验证。数据模型包括供应商定位网格、市场时间线分析、市场概览和指南、公司定位网格、专利分析、定价分析、公司市场份额分析、测量标准、全球与区域和供应商份额分析。要了解有关研究方法的更多信息,请向我们的行业专家咨询。
可定制
Data Bridge Market Research 是高级形成性研究领域的领导者。我们为向现有和新客户提供符合其目标的数据和分析而感到自豪。报告可定制,包括目标品牌的价格趋势分析、了解其他国家的市场(索取国家列表)、临床试验结果数据、文献综述、翻新市场和产品基础分析。目标竞争对手的市场分析可以从基于技术的分析到市场组合策略进行分析。我们可以按照您所需的格式和数据样式添加您需要的任意数量的竞争对手数据。我们的分析师团队还可以为您提供原始 Excel 文件数据透视表(事实手册)中的数据,或者可以帮助您根据报告中的数据集创建演示文稿。

