Global Cognitive Robotics Market
市场规模(十亿美元)
CAGR :
%
USD
6.54 Billion
USD
97.62 Billion
2024
2032
| 2025 –2032 | |
| USD 6.54 Billion | |
| USD 97.62 Billion | |
|
|
|
|
全球認知機器人市場細分,按學習類型(運動咿呀學語、模仿和知識獲取)和應用領域(航空航天與國防、汽車、消費電子、醫療保健和商業)劃分——產業趨勢及至2032年的預測
認知機器人市場規模
- 2024年全球認知機器人市場規模為65.4億美元 ,預計 2032年將達到976.2億美元,預測期內 複合年增長率為40.20% 。
- 市場成長主要得益於人工智慧 (AI) 和機器學習 (ML) 技術在機器人領域日益普及,用於自主決策和自適應學習。
- 醫療保健、製造業、物流和國防等領域對智慧機器人的需求不斷增長,旨在提高營運效率並減少人為幹預,這進一步加速了市場擴張。
認知機器人市場分析
- 由於神經網路、自然語言處理和電腦視覺技術的進步,認知機器人市場正經歷快速成長。這些技術的進步使機器人能夠以更高的準確性和更強的上下文感知能力執行類似人類的複雜任務。
- 認知系統的整合使機器人能夠從互動中學習,適應動態環境,並更有效地與人類協作,為它們在從工業自動化到個人助理等各個行業的部署鋪平了道路。
- 北美在認知機器人市場佔據主導地位,預計到2024年將以38.42%的市場份額位居榜首,這主要得益於人工智慧(AI)技術的快速普及以及領先的機器人製造商和技術公司的強大實力。該地區在製造業、醫療保健和物流等行業的自動化發展,加速了認知機器人的部署。
- 亞太地區預計將在全球認知機器人市場中實現最高增速,這主要得益於不斷擴大的製造能力、政府對人工智慧和機器人發展的支持性舉措,以及商業和醫療保健應用領域日益增長的普及應用。
- 2024年,模仿學習領域佔據了最大的市場份額,這主要得益於其能夠讓機器人透過觀察和複製行為來學習複雜的人類動作。這種方法可以加快訓練速度、縮短程式設計時間,並提高在動態環境中的適應能力。模仿學習在製造業和醫療保健等行業中得到了廣泛應用,在這些行業中,人機協作和精準任務執行至關重要。
報告範圍和認知機器人市場細分
|
屬性 |
認知機器人關鍵市場洞察 |
|
涵蓋的領域 |
|
|
覆蓋國家/地區 |
北美洲
歐洲
亞太
中東和非洲
南美洲
|
|
主要市場參與者 |
|
|
市場機遇 |
|
|
加值資料資訊集 |
除了對市場狀況(如市場價值、成長率、細分、地理覆蓋範圍和主要參與者)的洞察之外,Data Bridge Market Research 精心編制的市場報告還包括深入的專家分析、按地域劃分的公司生產和產能、分銷商和合作夥伴的網絡佈局、詳細和最新的價格趨勢分析以及供應鏈和需求的缺口分析。 |
認知機器人市場趨勢
認知機器人與人工智慧和機器學習的融合
- 人工智慧 (AI) 和機器學習 (ML) 技術的日益融合正在重塑認知機器人領域,增強機器人感知、推理和學習環境的能力。這種融合使機器人能夠在製造業、醫療保健和國防等領域自主執行複雜的、非結構化的任務,從而顯著提高營運效率和精確度。此外,AI 驅動的機器人技術能夠實現預測分析、即時決策和流程最佳化,這些對於現代工業自動化和研究應用至關重要。認知能力和物理能力的整合有助於各產業在降低錯誤率和營運風險的同時,實現更高的生產效率。
- 各行業對智慧自動化日益增長的需求正在加速人工智慧驅動的認知機器人的普及,這些機器人能夠進行自適應決策。這些系統可以分析即時數據、預測結果並優化性能,無需持續的人工幹預,從而提高生產效率並減少工業運營中的停機時間。各組織正在利用這些機器人來增強生產線的靈活性並管理複雜的物流工作流程。這種對人工智慧機器人技術的日益依賴正在打造更智慧、更安全、更有效率的工作場所,尤其是在航空航太、汽車和製藥等高風險和高精度要求的行業。
- 企業正越來越多地在物流和服務業部署機器學習驅動的機器人,以簡化庫存管理、物料搬運和客戶服務等營運流程。自然語言處理 (NLP) 和電腦視覺技術的進步進一步推動了這一趨勢,實現了無縫的人機協作和直覺的溝通。這些機器人不僅可以協助完成重複性任務,還能從環境數據和人類行為中學習,從而提供情境感知解決方案。行動性、智慧性和互動能力的結合,為零售、倉儲和醫療保健等行業的自動化服務創造了新的機會。
- 例如,2024年,IBM與波士頓動力公司合作開發用於工業應用的AI增強型機器人,這些機器人能夠自主導航、預測性維護和態勢感知,從而減少危險環境中對人類的依賴。此次合作的重點是利用IBM的Watson人工智慧平台來增強機器人的認知能力,使其能夠自主識別異常情況並優化工作流程。這項合作標誌著將高級分析技術與機器人技術相結合邁出了重要一步,為高性能工業環境中的安全、精確和可靠性樹立了新的標竿。
- 人工智慧整合認知機器人正在革新自動化領域,但其全部潛力取決於高品質資料集、強大的運算基礎設施以及確保倫理部署和決策透明度的監管框架。隨著自動化系統互聯程度的不斷提高,保障人工智慧機器人的網路安全和資料隱私日益成為重中之重。業內人士正致力於開發可解釋人工智慧(XAI)系統,以確保自主運作的問責制。應對這些倫理和技術挑戰對於在認知機器人生態系統中建立信任和實現長期永續發展至關重要。
認知機器人市場動態
司機
認知機器人在製造業和醫療保健領域的應用日益廣泛
- 製造業對認知機器人的快速應用源自於生產環境對更高自動化程度、精確度和靈活性的需求。具備認知能力的機器人能夠適應不斷變化的工作流程,即時識別錯誤,並在極少人工幹預的情況下執行精準任務,從而提高生產效率並降低成本。這種適應性減少了重複性或危險操作對人工的依賴,進而提升了工人的安全性和生產的穩定性。隨著工廠向工業4.0轉型,認知機器人正成為數位轉型策略中不可或缺的資產。
- 在醫療保健領域,認知機器人技術正日益受到關注,其應用涵蓋手術輔助、復健和病患監護等領域。這些系統利用人工智慧演算法分析患者數據,輔助診斷,並改善醫療服務。它們能夠從經驗中學習,從而提升臨床環境的安全性和治療效果。認知機器人也被用於消毒、樣本採集和藥物輸送,顯著降低了人類接觸傳染性病原體的風險。隨著醫院自動化程度的提高,這些機器人正在幫助優化病患照護流程,提升營運效率。
- 機器人製造商與人工智慧公司之間日益密切的合作正推動智慧機器人系統的持續創新。從汽車組裝線到養老院,認知機器人正被用來填補技能缺口、解決勞動力短缺問題,同時提升營運的連續性。科技巨頭與機器人公司之間的合作正在加速開發可擴展的、雲端連接的機器人解決方案。這種跨行業的合作正在促進互通性,使機器人能夠在整合的生產和服務生態系統中無縫溝通和協調。
- 例如,西門子於2023年推出了一款面向先進製造的認知機器人系統,該系統採用自學習演算法,無需重新編程即可識別並適應新任務,從而減少生產停機時間並提高靈活性。該系統增強了機器學習回饋迴路,實現了即時決策和自主工作流程最佳化。這項創新使工廠能夠更快地完成換型、提高產量並降低維護成本,為全球自適應工業機器人樹立了新的標竿。
- 儘管認知機器人技術的應用率持續上升,但解決認知系統與現有基礎設施之間的互通性和整合性挑戰,對於最大限度地提高效率和確保大規模部署仍然至關重要。各公司正致力於建構模組化和開源架構,以增強不同機器人平台之間的兼容性。此外,各方也在努力規範通訊協定並建立人工智慧倫理框架,以規範認知決策。克服這些挑戰將確保更順暢的部署,並加速認知機器人解決方案的商業化規模化。
克制/挑戰
自主決策的高開發成本與倫理問題
- 開發和部署認知機器人的高昂成本仍然是一大障礙,尤其對於中小企業而言更是如此。設計具備高級感知、推理和自學習能力的機器人需要對人工智慧軟體、感測器和計算硬體進行大量投資。維護、整合和系統升級還會進一步增加這些成本。缺乏經濟實惠的選擇限制了成本敏感型產業的採用,凸顯了可擴展和模組化機器人解決方案的必要性,這些解決方案可以降低小型企業的進入門檻。
- 圍繞自主決策的倫理和監管挑戰也引發了人們的擔憂。與問責制、隱私和資料保護相關的問題阻礙了其更廣泛的接受度,尤其是在涉及直接人機互動的應用中。各國政府和監管機構仍在製定框架來應對這些複雜問題。公眾對人工智慧驅動機器人的透明度和安全性的質疑加劇了這一挑戰,因此,企業必須在系統設計和營運中優先考慮可解釋性和合規性。
- 此外,能夠整合和維護先進機器人系統的熟練專業人員短缺,限制了其廣泛應用,尤其是在新興經濟體。人工智慧和機器人平台缺乏標準化,增加了營運複雜性和實施成本。雖然目前正在推行勞動力技能提升計劃和教育舉措來彌補這一缺口,但進展仍然緩慢。建構機器人工程和人工智慧整合領域的全球人才儲備,對於支援產業的持續成長至關重要。
- 例如,國際機器人聯合會(IFR)在2024年發布的報告指出,超過60%的全球製造商認為,高昂的初始成本和監管的不確定性是生產過程中採用認知機器人系統的主要障礙。報告也強調,需要加強公私合作,以鼓勵創新投資並減少合規摩擦。解決這些問題將有助於各行業在維持道德和財務責任的同時,加速數位轉型。
- 儘管市場潛力巨大,但透過合作研究、成本效益高的生產方式以及透明的人工智慧治理來克服這些財務和倫理挑戰,對於確保市場的可持續擴張至關重要。企業正日益投資於共享機器人平台和開放式創新生態系統,以最大限度地降低研發成本。政策制定者也在推動標準化測試和認證框架,以增強人們對自主系統的信心。這些舉措將共同為全球認知機器人市場負責任、包容和可擴展的成長鋪平道路。
認知機器人市場範圍
市場按學習類型和應用領域進行細分。
- 按學習類型
根據學習類型,認知機器人市場可細分為運動學習、模仿學習和知識獲取。 2024年,模仿學習佔據了最大的市場份額,這主要得益於其能夠使機器人透過觀察和複製行為來學習複雜的人類動作。這種方法可以加快訓練速度、縮短程式設計時間,並提高機器人在動態環境中的適應能力。模仿學習在製造業和醫療保健等需要人機協作和精準任務執行的領域中得到了廣泛應用。
預計在2025年至2032年間,知識獲取領域將迎來最快的成長,這主要得益於人工智慧和深度學習演算法的進步,這些技術使機器人能夠獨立地收集、分析和應用新資訊。這種能力增強了機器人的自主決策能力、適應能力和性能的持續改進。人工智慧驅動的機器人越來越多地採用基於知識的學習技術,這正在加速其在需要高階認知處理和態勢感知能力的行業中的應用。
- 透過申請
根據應用領域,認知機器人市場可細分為航空航太與國防、汽車、消費性電子、醫療保健和商業領域。 2024年,汽車領域佔據最大的市場份額,這主要得益於認知機器人在精密組裝、品質檢測和生產線自動化方面的應用日益廣泛。該領域的認知機器人系統能夠提高靈活性、降低錯誤率並支援預測性維護,使其成為現代智慧製造環境不可或缺的一部分。
預計2025年至2032年間,醫療保健領域將迎來最快成長,這主要得益於人工智慧機器人在外科手術輔助、病患復健和診斷支援等領域的日益普及。配備先進感測器和學習演算法的認知機器人能夠實現個人化護理,並提升臨床操作的安全性。此外,為因應勞動力短缺和提高醫療機構效率,對智慧自動化的需求不斷增長,也進一步推動了該領域的市場擴張。
認知機器人市場區域分析
- 北美在認知機器人市場佔據主導地位,預計到2024年將以38.42%的市場份額位居榜首,這主要得益於人工智慧(AI)技術的快速普及以及領先的機器人製造商和技術公司的強大實力。該地區在製造業、醫療保健和物流等行業的自動化發展,加速了認知機器人的部署。
- 對能夠執行複雜自適應任務的智慧自學習機器人系統的需求不斷增長,正在推動市場成長。此外,持續的研發投入、政府對創新的支持,以及機器人技術在國防和工業自動化領域日益廣泛的應用,也進一步推動了該地區機器人技術的應用。
- 該地區高度發展的技術基礎設施以及人工智慧新創公司與研究機構之間的緊密合作,為市場擴張創造了有利環境,鞏固了北美在認知機器人創新領域的領先地位。
美國認知機器人市場洞察
2024年,美國認知機器人市場在北美佔據最大份額,這主要得益於其雄厚的工業基礎以及在人工智慧、機器學習和機器人領域的領先技術。美國主要企業正大力投資自主系統,以提升製造彈性、優化物流並應用於醫療機器人領域。商業和國防領域對智慧服務機器人的需求不斷增長,進一步鞏固了美國的市場主導地位。此外,DARPA等機構的措施也正在推動創新,加速人工智慧在機器人研究中的應用。
歐洲認知機器人市場洞察
受汽車、航空航太和醫療保健等產業自動化程度不斷提高的推動,歐洲認知機器人市場預計將在2025年至2032年間實現顯著成長。該地區健全的監管框架促進了人工智慧和機器人技術的合乎倫理的使用,增強了消費者和企業的信心。歐洲製造商正越來越多地採用人工智慧機器人進行精密工程,以減少人為錯誤並提高永續性。對協作機器人和綠色製造實踐的日益重視預計將進一步加速整個歐洲大陸的採用。
英國認知機器人市場洞察
在政府大力支持人工智慧和機器人研究以及科技驅動型產業快速擴張的推動下,英國認知機器人市場預計將在2025年至2032年間實現最快成長。英國的大學和研究機構正處於開發用於工業自動化和醫療保健應用的下一代認知機器人的前沿。此外,人工智慧服務機器人在零售、飯店和物流等商業領域的應用也日益普及,反映出英國在塑造歐洲機器人生態系統中扮演越來越重要的角色。
德國認知機器人市場洞察
預計在2025年至2032年間,德國認知機器人市場將保持穩定成長,這主要得益於德國強大的工業基礎以及在工業4.0框架下對智慧製造的重視。德國企業正將認知機器人技術整合到生產線中,以提高生產的靈活性、精度和能源效率。德國對技術創新和資料安全的投入也進一步推動了市場擴張。此外,機器人企業與研究機構之間的合作也推動了自適應學習和自主機器人系統的持續進步。
亞太認知機器人市場洞察
亞太地區認知機器人市場預計將在2025年至2032年間實現最快成長,這主要得益於快速的工業化進程、政府支持的自動化計畫以及人工智慧和機器人研究領域不斷增長的投資。中國、日本和韓國等國家正引領創新,在製造業、電子業和醫療保健領域大規模應用認知機器人。本地機器人新創企業的不斷湧現以及人工智慧基礎設施的不斷完善,進一步推動了該地區的市場滲透率。
日本認知機器人市場洞察
由於日本擁有先進的技術生態系統以及社會對機器人技術在日常生活中的廣泛接受,預計2025年至2032年間,日本認知機器人市場將迎來全球最快的成長速度。認知機器人日益廣泛應用於老年護理、醫療保健和工業自動化等領域。日本致力於研發具有情感智慧和社交輔助功能的機器人,這正在為人機協作樹立新的標竿。此外,政府支持的各項舉措,例如人工智慧融合和機器人教育,也進一步鞏固了日本在智慧自動化領域的領先地位。
中國認知機器人市場洞察
2024年,中國認知機器人市場在亞太地區佔據最大的市場份額,這主要得益於政府對人工智慧研究的大力投入、龐大的製造能力以及快速的城市化進程。中國國家發展戰略強調將自身打造成為全球人工智慧和機器人中心,這正在加速推動認知機器人技術在工業和商業領域的部署。認知機器人在裝配線、物流中心和醫療機構的廣泛應用,提高了生產效率並降低了成本。此外,國內機器人製造商的崛起以及對智慧自動化解決方案日益增長的需求,正使中國成為認知機器人應用領域的全球領導者。
認知機器人市場佔有率
認知機器人產業主要由一些成熟企業引領,其中包括:
• Cognitive Operational Systems, Inc.(美國)
• Haapie SAS(法國)
• KinderLab Robotics(美國)
• BKIN Technologies(加拿大)
• RU Robots Ltd(英國)
• HeronRobots(義大利)
• Perceptronics Solutions(美國)
• Cognitive Spring LLC(美國)
• IBM Corporation(美國)
• Blue Prision(
英國
)
• UiPath(美國)
• Pegasystems Inc.(美國)
• NICE Ltd.(以色列)
• Celaton Ltd(英國)
• Kryon Systems(以色列)
• Kofax Inc.(美國)
• Cognitive Robots, SL(西班牙)
• Skydio, Inc.(美國)
全球認知機器人市場最新發展
- 2025年6月,軟銀機器人公司在巴黎開設了一家新的研發中心,專注於推動工業和服務應用領域的認知機器人技術。此舉旨在加速人機協作和智慧自動化領域的創新,鞏固軟銀在歐洲機器人生態系統中的地位,並提升其全球市場競爭力。
- 2025年5月,GoogleDeepMind與發那科(Fanuc)合作,共同開發用於製造業的先進認知機器人解決方案。此次合作的重點是整合人工智慧驅動的自動化和自適應學習能力,以提高生產效率和靈活性,標誌著智慧工廠自動化領域的一項重大進步。
- 2025年4月,優傲機器人任命了一位新的首席執行官,以推動其全球認知機器人策略。此次領導層變動預計將加速智慧協作機器人領域的創新和擴張,從而支持公司在工業自動化領域的成長。
- 2025年3月,亞馬遜機器人公司發表了一款全新的認知機械手臂,旨在提升物流中心的效率與精準度。這款人工智慧系統提高了物體識別和處理精度,鞏固了亞馬遜在倉儲自動化領域的領先地位,並為營運效率樹立了新的行業標竿。
- 2024年12月,ABB與微軟宣佈建立策略夥伴關係,將微軟Azure人工智慧整合到ABB的認知機器人平台中。此次整合將增強機器學習、預測分析和自主決策能力,進而提高工業運作的效率和智慧水準。
- 2024年11月,Agility Robotics公司獲得1.5億美元的C輪融資,用於擴大其人形認知機器人的生產規模。這項投資將支持其產品在商業和工業應用領域的更廣泛部署,從而促進全球機器人市場的創新和競爭。
- 2024年9月,西門子收購了Wandelbots的多數股權,Wandelbots是一家專注於工業自動化認知機器人軟體的新創公司。此次收購增強了西門子的人工智慧能力,並使其成為下一代自適應機器人解決方案的關鍵參與者。
- 2024年8月,NVIDIA發布了Isaac Nova Orin,這是一個面向製造業、物流業和服務業的新一代認知機器人平台。該平台增強了處理能力和感知能力,使開發人員能夠建立更智慧、更響應迅速的機器人系統。
- 2024年7月,軟銀機器人公司推出了專為醫療環境打造的全新認知服務機器人。該機器人配備了先進的人工智慧技術,能夠與患者互動並提供支持,從而提升醫療服務質量,減輕醫護人員的工作負擔,並促進機器人技術在醫療領域的更廣泛應用。
- 2024年6月,波士頓動力公司與現代汽車達成合作,共同開發用於物流和倉儲營運的認知機器人解決方案。此次合作將波士頓動力公司的機器人技術專長與現代汽車的工業規模結合,旨在提高供應鏈自動化的效率和靈活性。
- 2024年5月,ABB在上海啟用其全新的機器人超級工廠,該工廠將成為下一代認知協作機器人的全球生產中心。該工廠預計將加速全球機器人部署,並鞏固ABB在自動化技術領域的領先地位。
- 2024年4月,Covariant公司籌集了7,500萬美元資金,用於推動其人工智慧驅動的倉儲機器人技術。這筆投資將加速產品開發和全球擴張,使更聰明、更具自學習能力的機器人能夠提高物流營運的效率和可靠性。
SKU-
Get online access to the report on the World's First Market Intelligence Cloud
- Interactive Data Analysis Dashboard
- Company Analysis Dashboard for high growth potential opportunities
- Research Analyst Access for customization & queries
- Competitor Analysis with Interactive dashboard
- Latest News, Updates & Trend analysis
- Harness the Power of Benchmark Analysis for Comprehensive Competitor Tracking
研究方法
数据收集和基准年分析是使用具有大样本量的数据收集模块完成的。该阶段包括通过各种来源和策略获取市场信息或相关数据。它包括提前检查和规划从过去获得的所有数据。它同样包括检查不同信息源中出现的信息不一致。使用市场统计和连贯模型分析和估计市场数据。此外,市场份额分析和关键趋势分析是市场报告中的主要成功因素。要了解更多信息,请请求分析师致电或下拉您的询问。
DBMR 研究团队使用的关键研究方法是数据三角测量,其中包括数据挖掘、数据变量对市场影响的分析和主要(行业专家)验证。数据模型包括供应商定位网格、市场时间线分析、市场概览和指南、公司定位网格、专利分析、定价分析、公司市场份额分析、测量标准、全球与区域和供应商份额分析。要了解有关研究方法的更多信息,请向我们的行业专家咨询。
可定制
Data Bridge Market Research 是高级形成性研究领域的领导者。我们为向现有和新客户提供符合其目标的数据和分析而感到自豪。报告可定制,包括目标品牌的价格趋势分析、了解其他国家的市场(索取国家列表)、临床试验结果数据、文献综述、翻新市场和产品基础分析。目标竞争对手的市场分析可以从基于技术的分析到市场组合策略进行分析。我们可以按照您所需的格式和数据样式添加您需要的任意数量的竞争对手数据。我们的分析师团队还可以为您提供原始 Excel 文件数据透视表(事实手册)中的数据,或者可以帮助您根据报告中的数据集创建演示文稿。

