Global Data Science Platform Market
市场规模(十亿美元)
CAGR :
%
USD
204.58 Billion
USD
1,568.85 Billion
2024
2032
| 2025 –2032 | |
| USD 204.58 Billion | |
| USD 1,568.85 Billion | |
|
|
|
|
全球資料科學平台市場細分,按組件類型(平台、服務、支援和維護、諮詢以及部署和整合)、功能部門(行銷、銷售、物流、財務和會計、客戶支援、業務營運等)、部署模型(內部部署和基於雲端)、組織規模(中小型企業 (SME) 和大型企業)、最終用戶應用(銀行、金融服務和保險 (BFSI)、 IT、零售和電子商務、醫療保健和生命科學、製造業、能源和公用事業、媒體和娛樂、運輸和物流、政府等) - 行業趨勢和預測到 2032 年
數據科學平台市場規模
- 2024 年全球資料科學平台市場規模為2,045.8 億美元,預計到 2032 年將達到 15,688.5 億美元,預測期內 複合年增長率為 29.00%。
- 這種增長受到數據生成的指數級增長、人工智慧 (AI) 和機器學習 (ML) 的進步、雲端運算的廣泛採用以及對數據驅動決策的日益重視等因素的推動
數據科學平台市場分析
- 資料科學平台是一個整合環境,為資料科學家提供工具、函式庫和基礎設施來開發、管理和執行資料驅動的專案。它使用戶能夠收集、分析和視覺化大型數據集,同時促進團隊之間的協作
- 這些平台通常支援各種程式語言(例如 Python、R 和 SQL)、機器學習演算法和資料管道,以實現高效的模型建置和部署。
- 數據科學平台還提供版本控制、自動化和可擴展性等功能,使組織能夠更輕鬆地以結構化和可重複的方式利用數據洞察進行決策
- 由於技術基礎設施完善、支援資料密集型工作負載並促進資料科學平台的採用,北美預計將以 34.6% 的份額佔據資料科學平台市場的主導地位
- 由於企業和消費者資料量的激增,對高階分析解決方案的需求不斷增加,預計亞太地區將成為預測期內資料科學平台市場成長最快的地區
- 平台領域預計將佔據市場主導地位,市佔率達到 83.9%,這得益於其技術改進,例如資料探勘、高階運算和機器人技術,大大推動了該領域的成長。這些進步使資料科學家能夠更有效地創建、訓練、擴展和共享機器學習演算法
報告範圍和數據科學平台市場細分
|
屬性 |
數據科學平台關鍵市場洞察 |
|
涵蓋的領域 |
|
|
覆蓋國家 |
北美洲
歐洲
亞太
中東和非洲
南美洲
|
|
主要市場參與者 |
|
|
市場機會 |
|
|
加值資料資訊集 |
除了市場價值、成長率、市場區隔、地理覆蓋範圍、市場參與者和市場情景等市場洞察之外,Data Bridge 市場研究團隊策劃的市場報告還包括深入的專家分析、進出口分析、定價分析、生產消費分析和 pestle 分析。 |
數據科學平台市場趨勢
“加速人工智慧整合和平台整合”
- 全球數據科學平台市場正在經歷向人工智慧驅動的解決方案和平台整合的重大轉變
- 公司越來越多地將先進的人工智慧功能整合到其數據科學平台中,以增強自動化、預測分析和決策過程
- 例如,Databricks 最近收購了 Neon,這是一家專注於基於 PostgreSQL 技術的資料庫新創公司,體現了這一趨勢
- 這項策略性措施旨在增強 Databricks 的人工智慧資料管理能力,使企業能夠更有效率地建構人工智慧機器人和代理
- 此類整合可望簡化資料工作流程,並提供更具凝聚力的解決方案,以滿足日益增長的人工智慧驅動洞察需求
數據科學平台市場動態
司機
“數據生成呈指數級增長”
- 數位活動的激增導致數據生成量空前增加,從而刺激了對強大數據科學平台的需求
- 隨著物聯網設備、社群媒體和電子商務的興起,組織每天都在累積大量數據
- 為了有效地利用這些數據,企業需要複雜的工具和平台來分析、處理和得出可行的見解
- 例如,Databricks 報告稱,由於對管理非結構化資料和支援 AI 應用的高級資料分析解決方案的需求不斷增長,其收入同比增長了 60%。
- 數據激增凸顯了可擴展、高效的數據科學平台的必要性
機會
“人工智慧和機器學習工具的民主化”
- 人工智慧 (AI) 和機器學習 (ML) 工具的民主化為數據科學平台市場帶來了重大機會
- 隨著這些技術變得越來越普及,組織無需具備豐富的專業知識即可利用高階分析
- 微軟與 NVIDIA 的合作就是這一趨勢的體現,雙方利用雲端 AI 和加速運算推動醫療保健和生命科學創新
- 此次合作旨在透過加速精準醫療和人工智慧診斷的普及來改善患者護理
- 這些舉措凸顯了人工智慧和機器學習工具推動各領域創新的潛力,為數據科學平台創造了滿足更廣泛受眾需求的機會
克制/挑戰
“資料隱私和安全問題”
- 儘管成長前景光明,但資料隱私和安全問題對資料科學平台的採用構成了重大挑戰
- 資料外洩事件日益頻繁,GDPR 和 CCPA 等嚴格法規迫使組織優先考慮資料保護措施
- 例如,多個行業資料外洩事件的不斷增加已成為實施資料科學平台的重大障礙
- 這些擔憂需要開發安全合規的平台,以降低風險並確保資料的合乎道德的使用,從而影響市場動態
數據科學平台市場範圍
市場根據組件類型、功能劃分、部署模型、組織規模和最終用戶應用進行細分。
|
分割 |
細分 |
|
依組件類型 |
|
|
按職能部門 |
|
|
按部署模型 |
|
|
按組織規模 |
|
|
按最終用戶應用程式 |
|
預計到 2025 年,該平台將佔據組件類型市場的最大份額
預計到 2025 年,平台部分將佔據數據科學平台市場的主導地位,佔據 83.4% 的最大份額 ,這得益於資料探勘、高階運算和機器人等技術的改進,大大推動了該部分的成長。這些進步使資料科學家能夠更有效地創建、訓練、擴展和共享機器學習演算法。自動化在不同行業中越來越受歡迎。
預計在預測期內,BFSI 將在最終用戶應用領域佔據最大份額
到 2025 年,BFSI 領域預計將佔據市場主導地位,市場份額達到 51.31%,因為它越來越多地利用大數據分析來增強決策能力、改善客戶體驗並提高營運效率。隨著金融交易量和客戶互動量的不斷增長,銀行和金融機構正在採用數據科學平台來分析大量數據以獲取見解。
數據科學平台市場區域分析
“北美佔據數據科學平台市場最大份額”
- 北美在全球數據科學平台市場佔有相當大的份額,為 34.6%,這得益於各行各業對高級分析的大量投資,包括 BFSI(銀行、金融服務和保險)、醫療保健、零售和電信
- 該地區擁有完善的技術基礎設施,支援數據密集型工作負載並促進數據科學平台的採用
- 眾多本土數據科學平台供應商在北美擁有相當大的市場份額,為該地區的主導地位做出了貢獻
- 強勁的經濟和良好的商業環境進一步增強了北美在數據科學平台市場的領先地位
“亞太地區預計將實現數據科學平台市場最高複合年增長率”
- 中國、印度和印尼等國家正在經歷重大的數位轉型,導致數據科學平台的採用率不斷提高
- 中國新一代人工智慧發展規劃、印度國家人工智慧戰略等政策正在促進數據科學平台的發展
- 該地區的企業和消費者數據量正在激增,對高階分析解決方案的需求也隨之增加
- 印度理工學院古瓦哈提分校等機構推出的數據科學課程正在為培養熟練的勞動力做出貢獻,從而進一步加速市場成長
- 人工智慧和機器學習技術的投資不斷增加,推動了各行業採用數據科學平台
數據科學平台市佔率
市場競爭格局提供了競爭對手的詳細資訊。詳細資訊包括公司概況、公司財務狀況、收入、市場潛力、研發投資、新市場計劃、全球影響力、生產基地和設施、生產能力、公司優勢和劣勢、產品發布、產品寬度和廣度、應用優勢。以上提供的數據點僅與公司對市場的關注有關。
市場中主要的市場領導者有:
- IBM(美國)
- DataRobot Inc .,(美國)
- apheris AI GmbH(德國)
- 數位人才生態系(美國)
- 數據帶(以色列)
- dotData(美國)
- Explorium Inc.(美國)
- Noogata(以色列)
- Tecton Inc.,(美國)
- Spell Designs Pty Ltd(美國)
- Arrikto Inc.,(美國)
- 迭代(美國)
- 谷歌公司(美國)
- 微軟(美國)
- SAS Institute Inc.(美國)
- 亞馬遜網路服務公司(美國)
- MathWorks公司(美國)
- Cloudera Inc.(美國)
- Teradata(美國)
- TIBCO Software Inc.(美國)
全球數據科學平台市場的最新發展
- 2024 年 6 月,IBM 公司宣布與 Telefónica Tech 合作。此次合作將推動人工智慧 (AI)、分析和資料治理解決方案的採用,並滿足企業持續動態發展的需求
- 2024 年 3 月,微軟宣布與 NVIDIA 合作,利用雲端 AI 和加速運算推動醫療保健和生命科學創新。此次合作旨在透過加速精準醫療和人工智慧診斷的普及來改善患者護理,最終推動醫療保健產業的重大進步
- 2023 年 1 月,Science Applications International Corp. 推出了「Tenjin」資料科學平台,這是一個多功能解決方案,支援人工智慧和機器學習應用程式的低程式碼到全程式碼開發。 Tenjin 由 Dataiku 提供支持,促進了 AI 和 ML 模型開發的整個生命週期,從部署到訓練和自動化,以及先進的資料視覺化工具。該平台旨在簡化複雜流程,使更廣泛的企業能夠使用人工智慧
- 2022年10月,IBM公司推出了利用LTO技術的先進儲存解決方案Diamondback磁帶庫。這款創新產品在單一伺服器機架內擁有高達 27 PB 的驚人資料儲存容量。 Diamondback 旨在滿足日益增長的資料儲存需求,為需要安全且有效率地管理大量資訊的組織提供可擴展性和可靠性
- 2022 年 6 月,SAS 研究所透過收購鎌倉株式會社擴展了其能力,並透過綜合風險解決方案增強了其產品組合。此次收購專注於提供資產負債管理(ALM)和銀行業等其他金融領域的專業服務。 SAS 旨在透過整合資源和專業知識,提供全面的解決方案,應對複雜的風險管理挑戰,幫助企業做出明智的財務決策,有效應對市場不確定性
SKU-
Get online access to the report on the World's First Market Intelligence Cloud
- Interactive Data Analysis Dashboard
- Company Analysis Dashboard for high growth potential opportunities
- Research Analyst Access for customization & queries
- Competitor Analysis with Interactive dashboard
- Latest News, Updates & Trend analysis
- Harness the Power of Benchmark Analysis for Comprehensive Competitor Tracking
研究方法
数据收集和基准年分析是使用具有大样本量的数据收集模块完成的。该阶段包括通过各种来源和策略获取市场信息或相关数据。它包括提前检查和规划从过去获得的所有数据。它同样包括检查不同信息源中出现的信息不一致。使用市场统计和连贯模型分析和估计市场数据。此外,市场份额分析和关键趋势分析是市场报告中的主要成功因素。要了解更多信息,请请求分析师致电或下拉您的询问。
DBMR 研究团队使用的关键研究方法是数据三角测量,其中包括数据挖掘、数据变量对市场影响的分析和主要(行业专家)验证。数据模型包括供应商定位网格、市场时间线分析、市场概览和指南、公司定位网格、专利分析、定价分析、公司市场份额分析、测量标准、全球与区域和供应商份额分析。要了解有关研究方法的更多信息,请向我们的行业专家咨询。
可定制
Data Bridge Market Research 是高级形成性研究领域的领导者。我们为向现有和新客户提供符合其目标的数据和分析而感到自豪。报告可定制,包括目标品牌的价格趋势分析、了解其他国家的市场(索取国家列表)、临床试验结果数据、文献综述、翻新市场和产品基础分析。目标竞争对手的市场分析可以从基于技术的分析到市场组合策略进行分析。我们可以按照您所需的格式和数据样式添加您需要的任意数量的竞争对手数据。我们的分析师团队还可以为您提供原始 Excel 文件数据透视表(事实手册)中的数据,或者可以帮助您根据报告中的数据集创建演示文稿。

