Global Deep Learning Cognitive Computing Market
市场规模(十亿美元)
CAGR :
%
USD
41.97 Billion
USD
336.10 Billion
2025
2033
| 2026 –2033 | |
| USD 41.97 Billion | |
| USD 336.10 Billion | |
|
|
|
|
全球深度學習認知運算市場細分,按組件(平台和服務)、業務功能(人力資源、營運、財務、行銷和銷售等)、部署模式(本地部署、雲端部署和混合部署)、組織規模(中小企業和大型企業)、應用程式(自動化、智慧虛擬助理和聊天機器人行為分析、生物識別等)、最終用戶(銀行、金融服務和保險、零售和電子商務、旅遊和酒店、政府、IT和電信、醫療保健和生命科學、製造業、媒體和娛樂等)劃分——行業趨勢及至2033年的預測
全球深度學習認知運算市場規模及成長率是多少?
- 2025年全球深度學習認知運算市場規模為419.7億美元 ,預估 至2033年將達3,361億美元,預測期間內複合年增長率 為29.70%。
- 雲端運算、行動和分析等運算環境的不斷發展,直接影響深度學習認知運算市場的成長。
- 此外,對智慧業務流程日益增長的需求也促進了深度學習認知運算市場的成長。
深度學習認知運算市場的主要結論有哪些?
- 快速的技術進步以及社群媒體平台帶來的客戶參與度提升,也對市場成長產生了正面影響。此外,先進的人工智慧和機器學習技術的日益普及以及數位化進程的不斷推進,也大大促進了深度學習認知運算市場的成長。
- 然而,無法識別客戶意圖並做出有效回應是限制深度學習認知運算發展的主要因素,而資料管理和監管問題也可能對深度學習認知運算市場的成長構成挑戰。
- 北美在深度學習認知運算市場佔據主導地位,預計到2025年將佔據41.69%的收入份額,這主要得益於美國和加拿大對先進人工智慧技術的早期採用、強大的雲端基礎設施以及企業人工智慧和認知分析計畫的快速擴張。
- 亞太地區預計在2026年至2033年間實現8.25%的複合年增長率,成為成長最快的地區,這主要得益於中國、日本、印度、韓國和東南亞等地的快速數位化轉型、雲端運算的廣泛應用以及人工智慧投資的不斷增長。
- 平台細分市場預計將在2025年佔據62.4%的市場份額,這主要得益於深度學習框架、認知分析平台、人工智慧編排工具和模型開發環境的廣泛應用。
報告範圍及深度學習認知運算市場區隔
|
屬性 |
深度學習認知運算關鍵市場洞察 |
|
涵蓋部分 |
|
|
覆蓋國家/地區 |
北美洲
歐洲
亞太
中東和非洲
南美洲
|
|
主要市場參與者 |
|
|
市場機遇 |
|
|
加值資料資訊集 |
除了對市場狀況(如市場價值、成長率、細分、地理覆蓋範圍和主要參與者)的洞察之外,Data Bridge Market Research 精心編制的市場報告還包括深入的專家分析、定價分析、品牌份額分析、消費者調查、人口統計分析、供應鏈分析、價值鏈分析、原材料/消耗品概述、供應商選擇標準、PESTLE 分析、波特五力分析和監管框架。 |
深度學習認知運算市場的主要趨勢是什麼?
“緊湊型、高效能、邊緣運算深度學習認知運算系統的日益普及”
- 深度學習認知運算市場正見證著緊湊型、高速且具備邊緣運算能力的平台得到越來越廣泛的應用,這些平台旨在支援即時分析、自主決策和智慧自動化。
- 供應商正在推出高密度人工智慧加速器、多核心處理器和軟體定義認知平台,以實現更快的推理、自適應學習以及與企業IT和雲端生態系統的無縫整合。
- 人們對輕量級、可擴展且與PC整合的認知系統的日益青睞,正在推動物聯網網路、智慧製造、醫療診斷和金融分析等領域的廣泛應用。
- 例如,微軟、IBM、Google和亞馬遜網路服務等公司已經利用先進的深度學習框架、邊緣人工智慧功能和基於雲端的模型優化技術,增強了其認知運算平台。
- 對即時洞察、低延遲處理和智慧決策支援的需求日益增長,正在加速向高效能、緊湊型認知運算解決方案的轉變。
- 隨著資料量成長和人工智慧工作負載日益複雜,深度學習認知運算對於自主系統、預測智慧和下一代企業分析仍將至關重要。
深度學習認知運算市場的主要驅動因素是什麼?
- 對準確、可擴展且經濟高效的AI驅動決策系統的需求日益增長,以支援自動化、預測分析和智慧營運。
- 例如,到2025年,IBM、Google和SAS Institute Inc.等公司擴展了其深度學習認知產品,提高了模型的可解釋性、處理效率,並推出了行業特定的AI解決方案。
- 人工智慧應用在醫療保健、銀行、金融服務和保險 (BFSI)、零售、汽車和智慧基礎設施等領域的快速普及,正在推動美國、歐洲和亞太地區的需求成長。
- 深度神經網路、自然語言處理、強化學習和認知推理演算法的進步正在提升系統的準確性和效能。
- 邊緣人工智慧、人工智慧晶片和混合雲架構的日益普及,催生了對具備低延遲能力的高速認知運算平台的需求。
- 在人工智慧研發、數位轉型和智慧自動化領域持續投資的推動下,深度學習認知運算市場預計將迎來強勁的長期成長。
哪些因素正在挑戰深度學習認知運算市場的成長?
- 先進的人工智慧基礎設施、專用硬體加速器和高端認知平台的高昂成本限制了中小企業的採用。
- 例如,在2024年至2025年期間,GPU、AI處理器和雲端運算資源成本的上漲增加了深度學習認知解決方案的總擁有成本。
- 大規模深度學習模型的部署、訓練和管理日益複雜,這增加了對熟練的人工智慧專業人員和專門培訓的依賴。
- 新興市場對認知運算的應用案例、投資報酬率和整合能力的認知有限,阻礙了其普及。
- 來自傳統分析平台、基於規則的自動化系統和開源人工智慧框架的競爭帶來了定價壓力和差異化挑戰。
- 為了克服這些障礙,供應商正致力於開發成本優化的架構、可解釋人工智慧、託管服務和雲端原生認知平台,以擴大深度學習認知運算在全球的應用。
深度學習認知運算市場是如何細分的?
市場按組件、業務功能、部署模式、組織規模、應用程式和最終用戶進行細分。
- 按組件
依組件構成,深度學習認知運算市場可分為平台與服務兩大類。平台板塊預計在2025年佔據市場主導地位,市佔率高達62.4%,主要得益於深度學習架構、認知分析平台、人工智慧編排工具和模型開發環境的廣泛應用。企業越來越依賴平台來建置、訓練、部署和管理跨雲端和邊緣環境的認知應用。這些平台支援自然語言處理、電腦視覺、預測分析和自主決策等功能,使其成為數位轉型計畫的核心。
預計從2026年到2033年,服務板塊將以最快的複合年增長率成長,這主要得益於對諮詢、系統整合、模型客製化、部署支援和人工智慧託管服務需求的不斷增長。深度學習模型的日益複雜、人工智慧專業人才的短缺以及持續優化的需求,正促使企業轉向第三方服務提供者。隨著企業擴展認知解決方案,服務將在確保效能、安全性和合規性方面發揮關鍵作用。
- 按業務職能
根據業務職能,市場可細分為人力資源、營運、財務、行銷與銷售等領域。營運領域預計將在2025年佔據市場主導地位,市佔率達34.6%,主要得益於企業越來越多地部署深度學習認知運算來優化工作流程、提升供應鏈視覺性、增強預測性維護以及實現決策流程自動化。認知系統能夠實現即時監控、異常偵測和智慧資源分配,進而顯著提升各產業的營運效率。
預計在2026年至2033年期間,行銷和銷售部門將以最快的複合年增長率成長,這主要得益於人工智慧驅動的客戶分析、個人化推薦、情感分析和需求預測等技術的日益普及。各組織正在利用認知運算來增強客戶互動、提高轉換率並獲得更深入的行為洞察。客戶數據的日益豐富以及自然語言理解和預測分析技術的進步,正在加速這些技術在數位行銷和銷售職能中的應用。
- 按部署模式
根據部署模式,深度學習認知運算市場可分為本地部署、雲端部署和混合部署。雲端部署憑藉其可擴展性、成本效益、快速部署以及易於存取先進人工智慧基礎設施等優勢,預計將在2025年佔據48.9%的市場份額。基於雲端的認知平台使企業能夠處理大型資料集、更快地訓練深度學習模型,並在無需大量前期投資的情況下整合人工智慧功能。
從2026年到2033年,混合部署領域預計將以最快的複合年增長率成長,因為各組織都在尋求資料安全性和運算彈性之間的平衡。混合模型允許敏感工作負載保留在本地,同時利用雲端資源進行模型訓練和分析。日益嚴格的監管要求、對資料隱私的擔憂以及對低延遲處理的需求,正在推動受監管行業採用混合認知運算架構。
- 按組織規模
根據企業規模,市場可分為中小企業 (SME) 和大型企業。大型企業憑藉著雄厚的財力、大量數據以及對先進認知技術的早期應用,在 2025 年佔據了 66.2% 的市場份額。大型企業部署深度學習認知運算,用於企業級自動化、風險管理、客戶洞察和策略決策支援。
預計在2026年至2033年期間,中小企業領域將以最快的複合年增長率成長,這主要得益於基於雲端、訂閱式且經濟高效的認知運算解決方案的日益普及。中小企業正在利用人工智慧平台提高生產力、自動化日常任務,並在無需大量基礎設施投資的情況下獲得競爭優勢。日益增長的數位化、政府對人工智慧應用的支援以及人工智慧工具可近性的提高,正在加速中小企業對認知運算的採用。
- 透過申請
根據應用領域,市場可細分為自動化、智慧虛擬助理和聊天機器人、行為分析、生物辨識以及其他領域。預計到2025年,自動化領域將佔據市場主導地位,市佔率達37.8%,主要得益於企業越來越多地採用認知運算來自動化業務流程、決策和營運工作流程。深度學習驅動的自動化能夠提高效率、減少人為錯誤,並實現各行業的即時回應能力。
受人工智慧驅動的客戶支援、對話式商務和員工輔助工具需求不斷增長的推動,智慧虛擬助理和聊天機器人領域預計將在2026年至2033年間以最快的複合年增長率成長。自然語言處理、情境理解和語音辨識技術的進步顯著提高了聊天機器人的準確性和普及率。隨著客戶體驗成為關鍵的差異化因素,認知型虛擬助理的部署速度也將加快。
- 最終用戶
根據最終用戶劃分,深度學習認知運算市場可細分為銀行、金融服務和保險 (BFSI)、零售和電子商務、旅遊和酒店、政府、IT 和電信、醫療保健和生命科學、製造業、媒體和娛樂以及其他行業。 BFSI 產業預計將在 2025 年佔據市場主導地位,市佔率達 29.5%,這主要得益於認知運算在詐欺偵測、風險評估、客戶分析、演算法交易和合規管理等方面的廣泛應用。
預計2026年至2033年間,醫療保健和生命科學領域將以最快的複合年增長率成長,這主要得益於人工智慧在醫學影像、臨床決策支援、藥物研發和個人化醫療等領域的日益普及。不斷增長的醫療保健數據量、對預測性診斷日益增長的關注以及深度學習模型的進步,正在加速認知計算在整個醫療保健生態系統中的部署。
哪個地區在深度學習認知運算市場中佔最大份額?
- 北美地區在深度學習認知運算市場佔據主導地位,預計到2025年將佔據41.69%的收入份額,這主要得益於美國和加拿大對先進人工智慧技術的早期應用、強大的雲端基礎設施以及企業人工智慧和認知分析計畫的快速擴張。銀行、金融服務和保險(BFSI)、醫療保健、零售、製造和政府部門對深度學習平台的廣泛部署,也持續推動市場成長。
- 領先的區域企業正不斷利用先進的深度學習模型、自然語言處理、電腦視覺和即時決策智慧來增強認知運算平台,從而鞏固北美的技術領先地位。
- 全球人工智慧供應商的強大實力、高密度的人工智慧專業人才、健全的創業生態系統以及對人工智慧研發和數位轉型的持續投入,進一步鞏固了該地區的領先地位。
美國深度學習認知運算市場洞察
美國是北美最大的貢獻者,這得益於企業、雲端服務供應商和政府機構對認知運算的大規模應用。銀行、金融服務和保險 (BFSI)、醫療保健、零售、IT 和電信以及國防等行業對人工智慧驅動的自動化、預測分析、詐欺檢測和智慧虛擬助理的強勁需求推動了市場擴張。主要科技公司、超大規模雲端供應商和先進研究機構的存在加速了深度學習模式和認知平台的創新。生成式人工智慧、邊緣人工智慧和混合雲架構的日益普及進一步鞏固了市場的長期成長。
加拿大深度學習認知運算市場洞察
加拿大對區域成長做出了顯著貢獻,這得益於不斷擴大的人工智慧研究中心、政府的支持性政策以及認知運算在醫療保健、公共服務和金融機構中日益普及。大學、新創公司和大型企業越來越多地部署深度學習平台,用於數據驅動的決策、行為分析和智慧自動化。加拿大擁有大量人工智慧專業人才,產學研合作密切,且對雲端人工智慧基礎設施的投資不斷增加,這些因素共同推動了人工智慧技術在全國範圍內的穩步市場應用。
亞太地區深度學習認知運算市場
亞太地區預計在2026年至2033年間實現8.25%的複合年增長率,成為成長最快的地區,這主要得益於中國、日本、印度、韓國和東南亞等地區快速的數位轉型、雲端運算的廣泛應用以及人工智慧投資的不斷增長。製造業、零售業、銀行、金融服務業、醫療保健業和政府部門等各行各業的企業都在越來越多地部署深度學習認知運算,以實現自動化、客戶智慧和預測分析。智慧城市、人工智慧應用和數位基礎設施的成長持續推動該地區對可擴展認知運算平台的需求。
中國深度學習認知運算市場洞察
中國是亞太地區人工智慧領域最大的貢獻者,這得益於政府對人工智慧發展的大力支持、大規模雲端基礎設施的擴張以及企業對認知技術的快速應用。深度學習在智慧製造、金融分析、監控和電子商務個人化等領域的日益普及,推動了先進認知運算解決方案的需求。國內人工智慧技術供應商的存在以及大量數據的可用性,進一步增強了市場滲透率。
日本深度學習認知運算市場洞察
日本市場呈現穩定成長態勢,主要得益於認知運算在製造自動化、機器人、醫療分析和智慧基礎設施等領域的廣泛應用。對精準性、可靠性和智慧系統的高度重視,支撐了對高品質深度學習平台的需求。對人工智慧驅動的產業轉型和數位現代化投入的不斷增加,進一步鞏固了市場的長期擴張。
印度深度學習認知運算市場洞察
在蓬勃發展的創業生態系統、日益普及的雲端運算以及政府主導的數位化舉措的推動下,印度正崛起為一個高成長市場。認知運算在銀行、金融服務和保險(BFSI)、IT服務、醫療保健和電子化政府等領域的廣泛應用,進一步推動了市場成長。企業對自動化、分析和人工智慧驅動的客戶互動日益重視,加速了認知運算在全國的應用。
韓國深度學習認知運算市場洞察
韓國在人工智慧領域貢獻巨大,這主要得益於其在電信、智慧製造、消費性電子和醫療保健等行業的高應用率。人工智慧平台的快速發展、強大的數位基礎設施以及對創新的重視,推動了對深度學習認知運算解決方案的需求。對人工智慧研究和企業數位轉型的持續投入,也為市場的持續成長提供了支持。
深度學習認知運算市場中領先的公司有哪些?
深度學習認知運算產業主要由一些成熟企業引領,其中包括:
- 微軟(美國)
- IBM(美國)
- SAS Institute Inc.(美國)
- 亞馬遜網路服務公司(美國)
- 認知量表(美國)
- Numenta(美國)
- Enterra Solutions(美國)
- Expert System SpA(義大利)
- Google LLC(美國)
- Virtusa公司(美國)
- 思科系統公司(美國)
- 塔塔諮詢服務有限公司(印度)
- Acuiti集團(英國)
- 印孚瑟斯有限公司(印度)
- BurstIQ(美國)
- 紅斯基奧斯(印度)
- e-Zest Solutions(印度)
- Vantage Labs(美國)
- 認知軟體集團(美國)
- SparkCognition(美國)
全球深度學習認知運算市場近期有哪些發展動態?
- 2024年5月,IBM公司和SAP宣布擴大合作,專注於生成式人工智慧能力和產業特定的雲端解決方案,以協助企業加速數位轉型。此次合作旨在利用IBM在混合雲和先進人工智慧技術的優勢,將人工智慧嵌入SAP的業務流程中,從而在多個產業實現更智慧的決策和營運效率,進而加強企業對認知運算解決方案的採用。
- 2024年5月,總部位於印度的IT服務公司Wipro與微軟合作,面向金融服務業推出了一套基於生成式人工智慧的認知助理。這些解決方案基於微軟Azure OpenAI和文件智慧技術,能夠增強市場洞察、加速客戶註冊流程、簡化貸款發放流程,同時減少人工操作,進而提升銀行、金融服務和保險(BFSI)產業的生產力和使用者體驗。
- 2024年2月,微軟與法國人工智慧公司Mistral AI合作,旨在加速未來幾年的人工智慧創新。此次合作利用Azure的先進基礎設施,開發並部署Mistral的大型語言模型(包括Mistral Large),並透過Azure的「模型即服務」(Models as a Service)將其提供給全球用戶,從而擴大用戶對先進生成式人工智慧功能的存取。
- 2023年5月,IBM宣布計畫建立GPU即服務基礎設施,以支援AI密集型工作負載,同時推出AI驅動的儀錶板,用於衡量和管理雲端碳排放。 IBM也推出了一項新的IBM顧問業務,專注於WatsonX和生成式AI,以支援客戶部署,增強可擴展、可持續且適用於企業級應用的AI採用。
- 2023年3月,塔塔諮詢服務公司(TCS)發表了TCS認知工廠營運顧問,這是一款基於5G技術、專為微軟Azure私有行動邊緣運算平台打造的解決方案。該解決方案利用人工智慧和機器學習技術,提升生產智慧化、敏捷性和韌性,從而支持製造業、石油天然氣、消費品和製藥等行業的生產運營,推動更智慧、更具適應性的工業運作。
SKU-
Get online access to the report on the World's First Market Intelligence Cloud
- Interactive Data Analysis Dashboard
- Company Analysis Dashboard for high growth potential opportunities
- Research Analyst Access for customization & queries
- Competitor Analysis with Interactive dashboard
- Latest News, Updates & Trend analysis
- Harness the Power of Benchmark Analysis for Comprehensive Competitor Tracking
研究方法
数据收集和基准年分析是使用具有大样本量的数据收集模块完成的。该阶段包括通过各种来源和策略获取市场信息或相关数据。它包括提前检查和规划从过去获得的所有数据。它同样包括检查不同信息源中出现的信息不一致。使用市场统计和连贯模型分析和估计市场数据。此外,市场份额分析和关键趋势分析是市场报告中的主要成功因素。要了解更多信息,请请求分析师致电或下拉您的询问。
DBMR 研究团队使用的关键研究方法是数据三角测量,其中包括数据挖掘、数据变量对市场影响的分析和主要(行业专家)验证。数据模型包括供应商定位网格、市场时间线分析、市场概览和指南、公司定位网格、专利分析、定价分析、公司市场份额分析、测量标准、全球与区域和供应商份额分析。要了解有关研究方法的更多信息,请向我们的行业专家咨询。
可定制
Data Bridge Market Research 是高级形成性研究领域的领导者。我们为向现有和新客户提供符合其目标的数据和分析而感到自豪。报告可定制,包括目标品牌的价格趋势分析、了解其他国家的市场(索取国家列表)、临床试验结果数据、文献综述、翻新市场和产品基础分析。目标竞争对手的市场分析可以从基于技术的分析到市场组合策略进行分析。我们可以按照您所需的格式和数据样式添加您需要的任意数量的竞争对手数据。我们的分析师团队还可以为您提供原始 Excel 文件数据透视表(事实手册)中的数据,或者可以帮助您根据报告中的数据集创建演示文稿。

