Global Deep Learning Neural Networks Dnns Market
市场规模(十亿美元)
CAGR :
%
USD
52.30 Billion
USD
349.40 Billion
2024
2032
| 2025 –2032 | |
| USD 52.30 Billion | |
| USD 349.40 Billion | |
|
|
|
|
全球深度學習神經網路 (DNN) 市場細分,按組件(硬體、軟體和服務)、應用(圖像識別、自然語言處理、語音識別和數據挖掘)、最終用戶(銀行、金融服務和保險 (BFSI)、IT 和電信、醫療保健、零售、汽車、製造、航空航天和國防、安全等)- 行業趨勢和預測到 2032 年
深度學習神經網路(DNN)市場規模
- 2024 年全球深度學習神經網路 (DNN) 市場規模為523 億美元 ,預計 到 2032 年將達到 3,494 億美元,預測期內 複合年增長率為 31.2%。
- 市場成長主要受到技術突破、數據可用性提高和產業應用擴大的推動。隨著人工智慧 (AI) 越來越多地融入醫療保健、汽車、金融和製造等領域,DNN 因其處理大量資料集和提取複雜模式的能力而脫穎而出。
- 此外,雲端運算和邊緣 AI 的進步使得 DNN 更易於存取和可擴展。世界各國政府和企業正在加大對人工智慧研發的投資,進一步推動基於 DNN 的解決方案的採用。
深度學習神經網路(DNN)市場分析
- 全球深度學習神經網路 (DNN) 市場正受到人工智慧專用硬體強勁技術進步的推動,實現更快、更有效率的模型訓練和部署。
- 自動駕駛汽車和服務機器人等自主系統的激增,加上深度學習在 NLP 和影像辨識領域的作用不斷擴大,正在推動各行業的應用。
- 北美在深度學習神經網路 (DNN) 市場佔據主導地位,2024 年的收入份額最大,為 39.01%,其特點是自動駕駛汽車和智慧機器人的應用日益廣泛。
- 由於自然語言處理 (NLP) 和電腦視覺應用的不斷擴展,預計亞太地區將成為預測期內深度學習神經網路 (DNN) 市場成長最快的地區。
- 軟體領域在深度學習神經網路 (DNN) 市場佔據主導地位,到 2024 年市場份額將達到 45.2%,這得益於大數據的激增和數據複雜性的不斷增加。
報告範圍和深度學習神經網路(DNN)市場細分
|
屬性 |
深度學習神經網路 (DNN)市場洞察 |
|
涵蓋的領域 |
|
|
覆蓋國家 |
北美洲
歐洲
亞太
中東和非洲
南美洲
|
|
主要市場參與者 |
|
|
市場機會 |
|
|
加值資料資訊集 |
除了對市場價值、成長率、細分、地理覆蓋範圍和主要參與者等市場情景的洞察之外,Data Bridge Market Research 策劃的市場報告還包括深入的專家分析、定價分析、品牌份額分析、消費者調查、人口統計分析、供應鏈分析、價值鏈分析、原材料/消耗品概述、供應商選擇標準、PESTLE 分析、波特分析和監管框架。 |
深度學習神經網路(DNN)市場趨勢
“擴展跨行業應用”
- 全球深度學習神經網路 (DNN) 市場的一個主要趨勢是 DNN 應用在醫療保健、汽車、金融和製造業等不同領域的快速擴展。這些網路正在推動醫療診斷、詐欺偵測、自動駕駛和預測性維護領域的突破。
- 例如,在醫療保健領域,DNN 越來越多地用於基於影像的診斷,例如在放射掃描中檢測腫瘤。 Aidoc 和 Zebra Medical Vision 等公司正在利用 DNN 協助放射科醫師做出更快、更準確的診斷。
- 在汽車領域,北美和歐洲在部署基於 DNN 的高級駕駛輔助系統 (ADAS) 和自動駕駛汽車方面處於領先地位。特斯拉、NVIDIA 和 Waymo 正在利用深度學習來改善道路上的決策和即時影像辨識。
- 金融業也正在採用 DNN 來檢測異常並高精度地預測市場趨勢。摩根大通和高盛正在大力投資人工智慧團隊,專注於建立基於 DNN 的交易和風險評估系統。
- 在製造業中,DNN 透過視覺檢查、缺陷檢測和預測性設備維護的自動化實現智慧工廠。西門子和通用電氣等公司正在率先採用這些智慧系統,以減少停機時間並提高營運效率。
- 由於中國、韓國和印度等國家強而有力的人工智慧策略,亞太地區正成為成長最快的地區。政府支持的措施和對人工智慧研發的大量資金正在推動 DNN 的大規模應用。
深度學習神經網路(DNN)市場動態
司機
“大數據的激增和計算能力的提升”
- 來自物聯網設備、社群媒體和企業系統等來源的資料生成呈指數級增長,推動了深度學習神經網路在影像辨識、自然語言處理和預測分析等任務中的應用。
- 例如,2025 年 3 月,NVIDIA 發布了其 Blackwell GPU 架構,為深度學習訓練和推理工作負載帶來了 4 倍以上的效能提升,支援醫療保健、汽車和金融服務領域的即時應用。
- 包括 AWS 和 Google Cloud 在內的雲端服務供應商越來越多地提供最佳化的 DNN 框架作為託管服務,從而簡化部署和擴展。
- 根據IDC統計,截至2025年第一季度,全球超過70%的企業已將基於DNN的解決方案整合到至少一項業務功能中,反映出強勁的市場動能。
克制/挑戰
“模型訓練資源消耗大、複雜度高”
- 訓練深度學習神經網路通常需要大量的運算資源、專用硬體(例如 GPU、TPU)和能源消耗,這可能會成本高昂。
- 例如,OpenAI 的 GPT-4 需要每秒數千千萬億次的運算能力和相當於數百個美國家庭每年使用的能量。
- 此外,調整超參數、處理過度擬合和實現模型可解釋性的複雜性繼續對開發人員構成挑戰,尤其是在金融和醫療保健等受監管的領域。
- 對於缺乏高效能運算基礎設施和深度人工智慧人才庫的中小型企業來說,這些障礙尤其明顯。
深度學習神經網路(DNN)市場範圍
市場根據組件、應用和最終用戶進行細分。
- 按組件
根據組件,深度學習神經網路 (DNN) 市場分為硬體、軟體和服務。 2024 年,軟體領域將佔據最大的市場收入份額,達到 48.2%,這得益於人工智慧專用硬體的強勁技術進步,從而實現更快、更有效率的模型訓練和部署。
預計軟體領域將在 2025 年至 2032 年間實現 21.7% 的最快增長率,這得益於自動駕駛汽車和服務機器人等自動化系統的激增,再加上深度學習在 NLP 和圖像識別領域的作用不斷擴大,從而推動了各個行業的採用。
- 按應用
根據應用,深度學習神經網路 (DNN) 市場細分為影像辨識、自然語言處理、語音辨識和資料探勘。影像辨識領域在2024 年佔據了最大的市場收入份額,這得益於大數據的快速增長,為這些模型提供了豐富的輸入,尤其是在醫療保健領域,DNN 正在徹底改變診斷和治療個人化。
預計自然語言處理領域將在 2025 年至 2032 年間見證最快的複合年增長率,這得益於深度學習與量子計算和神經形態晶片等前沿技術的融合,有望重新定義性能上限,開闢新的商業和科學前沿。
- 按最終用戶
根據最終用戶,深度學習神經網路 (DNN) 市場細分為銀行、金融服務和保險 (BFSI)、IT 和電信、醫療保健、零售、汽車、製造、航空航太和國防、安全等。 2024 年,銀行業佔據了最大的市場收入份額,這得益於硬體創新,例如 GPU 和 TPU 等專用 AI 晶片的開發,提高了深度學習過程的效率。
預計醫療保健將在 2025 年至 2032 年間實現最快的複合年增長率,這得益於物聯網設備、社交媒體和企業系統等來源生成的數據的急劇增長,推動了深度學習神經網路在圖像識別、自然語言處理和預測分析等任務中的應用。
深度學習神經網路(DNN)市場區域分析
- 受技術突破、數據可用性提高和行業應用擴展的推動,北美在深度學習神經網路 (DNN) 市場佔據主導地位,2024 年的收入份額最大,為 39.01%。隨著人工智慧 (AI) 越來越多地融入醫療保健、汽車、金融和製造等領域,DNN 因其處理大量資料集和提取複雜模式的能力而脫穎而出。
- 這為成長開闢了無數動力和機會。其中最主要的是個人化服務、增強自動化和預測分析的需求不斷增長。此外,雲端運算和邊緣 AI 的進步使得 DNN 更易於存取和可擴展。
- 世界各國政府和企業正在加大對人工智慧研發的投資,進一步推動基於 DNN 的解決方案的採用。另一個重要驅動因素是智慧型設備和物聯網感測器的普及,它們提供即時數據來支援 DNN 訓練。
美國深度學習神經網路 (DNN) 市場洞察
2024 年,美國深度學習神經網路 (DNN) 市場佔據北美最大的收入份額,達到 81%,這得益於政府和機構對人工智慧研究的資助,尤其是在國防、醫療保健和教育領域。深度學習在各行業的應用越來越廣泛。在醫療保健領域,它用於預測分析和早期疾病檢測。汽車產業利用 DNN 推動自動駕駛汽車的發展,而零售業則利用 DNN 進行影像辨識和客戶行為分析。
歐洲深度學習神經網路 (DNN) 市場洞察
預計歐洲深度學習神經網路 (DNN) 市場將在整個預測期內以大幅複合年增長率擴張,這主要得益於硬體創新,例如 GPU 和 TPU 等專用 AI 晶片的開發,從而提高了深度學習過程的效率。此外,深度學習即服務 (DLaaS) 平台的出現減少了對基礎設施的大量前期投資的需求,使企業更容易獲得這些技術。
英國深度學習神經網路 (DNN) 市場洞察
英國深度學習神經網路 (DNN) 市場預計在預測期內將以顯著的複合年增長率成長,這得益於人工智慧專用硬體的強勁技術進步,從而實現更快、更有效率的模型訓練和部署。自動駕駛汽車和服務機器人等自主系統的激增,加上深度學習在 NLP 和影像辨識領域的作用不斷擴大,正在推動各行業的應用。大數據的快速成長為這些模型提供了豐富的輸入,尤其是在醫療保健領域,DNN 正在徹底改變診斷和治療個人化。
德國深度學習神經網路 (DNN) 市場洞察
預計在預測期內,德國深度學習神經網路 (DNN) 市場將以相當可觀的複合年增長率擴張,這得益於邊緣 AI 應用領域的大量機遇,將 DNN 整合到智慧型裝置中可以產生低延遲的即時洞察。此外,深度學習與量子運算和神經形態晶片等前沿技術的融合有望重新定義效能上限,開闢新的商業和科學前沿。
亞太地區深度學習神經網路 (DNN) 市場洞察
在 GPU/TPU 硬體和量子運算的快速發展推動下,亞太深度學習神經網路 (DNN) 市場預計在 2025 年至 2032 年的預測期內以 24% 的最快複合年增長率成長,從而實現更高效、更快的 DNN 處理。
日本深度學習神經網路 (DNN) 市場洞察
由於日本的高科技文化、快速的城市化和對便利性的需求,日本深度學習神經網路 (DNN) 市場正在獲得發展動力。日本市場非常重視安全性,智慧鎖的採用受到高度依賴深度學習演算法的自主系統(例如自動駕駛汽車、無人機、機器人)的擴展的推動。
中國深度學習神經網路(DNN)市場洞察
2024年,中國深度學習神經網路(DNN)市場佔據亞太地區最大的市場收入份額,受道德和可解釋的人工智慧成為關注點的推動,開發可解釋神經網路模型的機會也在創造新的成長管道。
深度學習神經網路(DNN)市場份額
深度學習神經網路 (DNN) 市場主要由知名公司主導,包括:
- ALYUDA 研究有限公司
- IBM
- 美光科技公司
- 神經技術有限公司
- 神經維度公司
- 神經網路
- NVIDIA公司
- SKYMIND公司
- 三星
- 高通科技公司
- 英特爾公司
- 亞馬遜網路服務公司
- 微軟
- GMDH股份有限公司
- 感官公司
- 沃德系統集團有限公司
- 賽靈思公司
- 星智
全球深度學習神經網路(DNN)市場的最新發展
- 2025年4月,GoogleDeepMind作為人工智慧研究領域的領導者,DeepMind開發了Gemma和PaliGemma 2等先進模型,專注於語言和視覺任務。他們的創新,例如伊薩卡,有助於恢復古代文獻,並展示了深度學習應用的多功能性。
- 2024年3月,IBM在人工智慧領域的豐富經驗,IBM的Watson平台將機器學習融入業務流程中,提供客戶服務聊天機器人等解決方案。他們對人工智慧研究的投入持續影響著各個產業。
- 2025年3月,英特爾透過收購Nervana、Movidius等公司擴展了其AI能力,增強了深度學習軟體,並將AI應用引入低功耗設備。與微軟在 Bing 人工智慧加速方面的合作凸顯了它們的市場影響力。
- 2025 年 2 月,微軟將在其產品中整合人工智慧,從 Cortana 助理到 Azure 的機器學習服務。他們對人工智慧新創公司和工具的投資體現了推動深度學習技術的強大方法。
- 2025年1月,OpenAI以開發先進的AI模型而聞名,致力於創造造福人類的AI。他們的開源方法以及與微軟和亞馬遜等公司的合作凸顯了他們在人工智慧社群中的影響力。
SKU-
Get online access to the report on the World's First Market Intelligence Cloud
- Interactive Data Analysis Dashboard
- Company Analysis Dashboard for high growth potential opportunities
- Research Analyst Access for customization & queries
- Competitor Analysis with Interactive dashboard
- Latest News, Updates & Trend analysis
- Harness the Power of Benchmark Analysis for Comprehensive Competitor Tracking
研究方法
数据收集和基准年分析是使用具有大样本量的数据收集模块完成的。该阶段包括通过各种来源和策略获取市场信息或相关数据。它包括提前检查和规划从过去获得的所有数据。它同样包括检查不同信息源中出现的信息不一致。使用市场统计和连贯模型分析和估计市场数据。此外,市场份额分析和关键趋势分析是市场报告中的主要成功因素。要了解更多信息,请请求分析师致电或下拉您的询问。
DBMR 研究团队使用的关键研究方法是数据三角测量,其中包括数据挖掘、数据变量对市场影响的分析和主要(行业专家)验证。数据模型包括供应商定位网格、市场时间线分析、市场概览和指南、公司定位网格、专利分析、定价分析、公司市场份额分析、测量标准、全球与区域和供应商份额分析。要了解有关研究方法的更多信息,请向我们的行业专家咨询。
可定制
Data Bridge Market Research 是高级形成性研究领域的领导者。我们为向现有和新客户提供符合其目标的数据和分析而感到自豪。报告可定制,包括目标品牌的价格趋势分析、了解其他国家的市场(索取国家列表)、临床试验结果数据、文献综述、翻新市场和产品基础分析。目标竞争对手的市场分析可以从基于技术的分析到市场组合策略进行分析。我们可以按照您所需的格式和数据样式添加您需要的任意数量的竞争对手数据。我们的分析师团队还可以为您提供原始 Excel 文件数据透视表(事实手册)中的数据,或者可以帮助您根据报告中的数据集创建演示文稿。

