Global Hardware Acceleration Market
市场规模(十亿美元)
CAGR :
%
USD
17.12 Billion
USD
420.56 Billion
2024
2032
| 2025 –2032 | |
| USD 17.12 Billion | |
| USD 420.56 Billion | |
|
|
|
|
全球硬體加速市場細分,按類型(圖形處理單元、視訊處理單元、人工智慧加速器、正則表達式加速器、加密加速器等)、應用(深度學習培訓、公有雲推理、企業推理等)、最終用戶(資訊科技和電信、BFSI、零售、酒店、物流、汽車、醫療保健、能源等)- 行業趨勢和預測到 2032 年
全球硬體加速市場規模和成長率是多少?
- 2024 年全球硬體加速市場規模為171.2 億美元 ,預計 到 2032 年將達到 4,205.6 億美元,預測期內複合年增長率 為49.20%。
- 市場成長主要得益於連網家居設備和智慧家居技術的日益普及和技術進步,從而推動了住宅和商業環境的數位化程度提高
- 此外,消費者對安全、用戶友好且整合的家居和企業解決方案的需求日益增長,這使得硬體加速成為首選的現代門禁系統。這些因素正在加速硬體加速解決方案的普及,顯著推動產業成長。
硬體加速市場的主要內容是什麼?
- 硬體加速器為門和大門提供電子或數位存取控制,由於其增強的便利性、遠端存取功能以及與智慧家庭生態系統的無縫集成,成為住宅和商業環境中現代家庭安全和自動化系統越來越重要的組成部分
- 硬體加速需求的不斷增長主要源於智慧家居技術的廣泛應用、消費者對安全的日益擔憂以及對無鑰匙進入便利性的日益增長的偏好
- 受人工智慧運算、資料中心和高效能工作負載的強勁需求推動,北美在硬體加速市場佔據主導地位,2024 年的營收份額最高,為 45.69%。
- 受快速數位轉型、5G 網路擴張以及各行各業人工智慧應用激增的推動,亞太地區硬體加速市場預計將在 2025 年至 2032 年間以 9.14% 的複合年增長率成長。
- 圖形處理單元 (GPU) 領域佔據市場主導地位,2024 年的收入份額最大,為 46.5%,這得益於其在加速人工智慧、遊戲和高效能運算所需的平行運算方面所發揮的重要作用
報告範圍和硬體加速市場細分
|
屬性 |
硬體加速關鍵市場洞察 |
|
涵蓋的領域 |
|
|
覆蓋國家 |
北美洲
歐洲
亞太
中東和非洲
南美洲
|
|
主要市場參與者 |
|
|
市場機會 |
|
|
加值資料資訊集 |
除了對市場價值、成長率、細分、地理覆蓋範圍和主要參與者等市場情景的洞察之外,Data Bridge Market Research 策劃的市場報告還包括深入的專家分析、定價分析、品牌份額分析、消費者調查、人口統計分析、供應鏈分析、價值鏈分析、原材料/消耗品概述、供應商選擇標準、PESTLE 分析、波特分析和監管框架。 |
硬體加速市場的主要趨勢是什麼?
透過人工智慧和機器學習整合增強性能
- 全球硬體加速市場的一個主要且正在加速發展的趨勢是人工智慧(AI) 與機器學習 (ML) 的融合,以優化運算效能並降低資料密集型工作負載的延遲。這一趨勢正在重新定義硬體加速器在雲端運算、自動駕駛汽車和高效能運算 (HPC) 等行業中的作用。
- 例如,NVIDIA 的 GPU 和 Google 的張量處理單元 (TPU) 越來越多地用於處理人工智慧驅動的任務,例如影像辨識、預測分析和自然語言處理,與通用 CPU 相比,效率顯著提高
- 嵌入AI功能的硬體加速器可以動態分配資源,提高推理速度,並為大規模操作提供節能運算
- 與人工智慧工作負載的整合也推動了邊緣設備的採用,支援物聯網、5G 和機器人技術的即時決策
- 這種向人工智慧驅動、智慧和高速加速器的轉變正在重塑市場預期,迫使英特爾、NVIDIA 和高通等主要參與者創新並擴展以人工智慧為中心的產品線
- 因此,企業和消費者市場對人工智慧整合硬體加速器的需求正在激增,推動長期成長
硬體加速市場的關鍵驅動因素是什麼?
- 人工智慧、雲端運算和深度學習等應用對更快、更有效率的數據處理的需求不斷增長,這是硬體加速市場的主要驅動力
- 例如,2024 年 3 月,英特爾推出了專為大規模生成式 AI 工作負載而設計的 Gaudi 3 AI 加速器,展示了整個行業對專用高性能晶片的關注
- 企業和開發人員越來越多地從僅使用 CPU 的基礎設施轉向基於 GPU、FPGA 和 ASIC 的加速器,以完成需要並行處理和即時洞察的任務
- 雲端服務和資料中心的爆炸性成長是另一個關鍵因素,因為 AWS、Microsoft Azure 和 Google Cloud 等超大規模供應商不斷部署加速器以滿足人工智慧驅動的客戶需求
- 此外,自動駕駛、AR/VR 和 5G 的日益普及進一步刺激了需求,因為這些技術需要高速、低延遲的運算
- 對節能解決方案的需求不斷增長,這些解決方案可以最大限度地降低營運成本,同時最大限度地提高吞吐量,這也推動了各行各業的採用
- 這些驅動因素共同將硬體加速確立為現代運算基礎設施的基石。
哪些因素正在阻礙硬體加速市場的成長?
- 硬體加速市場面臨的主要挑戰是部署成本高、複雜性高,以及與聯網加速器相關的網路安全風險
- 先進的 GPU、FPGA 和 ASIC 需要大量的資本投入,因此小型企業和對成本敏感的市場很難獲得它們
- 例如,據報道,廣泛用於人工智慧訓練的 NVIDIA H100 GPU 單價高達數萬美元,限制了其在發展中地區的廣泛使用
- 除了成本障礙之外,對使用硬體加速器的雲端環境中資料安全性和完整性的擔憂也引發了企業的猶豫
- 此外,快速的創新步伐往往使現有硬體在較短的產品週期內過時,為長期投資回報率和部署策略帶來挑戰
- 儘管企業正在努力透過提供基於雲端的加速器服務和增強加密來緩解這些擔憂,但可負擔性和安全性仍然是主要障礙
- 透過低成本解決方案、可擴展的加速器即服務模式和更強大的安全框架克服這些障礙對於未來幾年的廣泛採用至關重要
硬體加速市場如何細分?
市場根據類型、應用程式和最終用戶進行細分。
- 按類型
根據類型,硬體加速市場細分為圖形處理單元 (GPU)、視訊處理單元 (VPU)、人工智慧加速器、正規表示式加速器、加密加速器和其他。圖形處理單元 (GPU) 佔據市場主導地位,2024 年的收入份額最高,達到 46.5%,這得益於其在加速人工智慧、遊戲和高效能運算所需的平行運算方面所發揮的重要作用。 GPU 廣泛應用於資料中心和雲端平台,是大規模人工智慧模型訓練不可或缺的零件。
預計2025年至2032年,人工智慧加速器領域將實現最快的複合年增長率,達到23.4%,這得益於人工智慧在自動駕駛、醫療影像和機器人等產業的快速應用。人工智慧加速器在降低功耗的同時提供更高的吞吐量,使其越來越受歡迎。邊緣人工智慧投資的不斷成長進一步支撐了人工智慧加速器的強勁成長軌跡。
- 按應用
根據應用,硬體加速市場細分為深度學習訓練、公有雲推理、企業推理和其他。由於企業和研究機構高度依賴硬體加速器來處理大量資料集和訓練複雜的神經網絡,深度學習訓練領域在2024年佔據了最大的市場收入份額,達到44.1%。包括大型語言模型在內的生成式人工智慧應用數量的不斷增長,持續推動著該領域的巨大需求。
預計2025年至2032年期間,公有雲推理領域將以22.8%的最快複合年增長率擴張,這得益於AWS、Microsoft Azure和Google Cloud等雲端服務供應商內部人工智慧功能的日益整合。基於雲端的推理技術允許跨行業可擴展地部署人工智慧應用,從而提供經濟高效且靈活的高級運算資源存取方式,這對於新創公司和基礎設施有限的企業尤其具有吸引力。
- 按最終用戶
根據最終用戶,硬體加速市場細分為資訊科技和電信、商業、金融服務、保險、零售、飯店、物流、汽車、醫療保健、能源及其他。資訊科技和電信產業佔據市場主導地位,2024 年的營收份額最高,達到 38.6%,這得益於資料中心、5G 基礎設施和雲端運算平台對硬體加速器的高度依賴。對即時分析、安全通訊和大規模 AI 工作負載的需求進一步推動了該領域的應用。
預計醫療保健領域在2025年至2032年期間的複合年增長率將達到21.9%,達到最快的水平,這得益於人工智慧在醫學影像、藥物研發、基因組學和病患數據分析等領域日益廣泛的應用。硬體加速器對於精準快速地處理大量醫療保健數據至關重要,有助於加快診斷速度並實現個人化治療。全球對數位醫療基礎設施的投資不斷增長,支持了該領域的快速擴張。
哪個地區佔據硬體加速市場的最大份額?
- 受人工智慧運算、資料中心和高效能工作負載的強勁需求推動,北美在硬體加速市場佔據主導地位,2024 年的營收份額最高,為 45.69%。
- 該地區的企業高度重視 GPU、FPGA 和 AI 晶片等硬體加速器與雲端和邊緣系統的可擴展性、性能優化和無縫集成
- 科技巨頭的大規模投資、強大的新創企業生態系統以及 IT、BFSI、醫療保健和汽車行業對低延遲 AI 應用日益增長的需求進一步支持了這一主導地位
美國硬體加速市場洞察
2024年,美國硬體加速市場佔據了81%的最大區域份額,這得益於人工智慧模型、資料密集型運算和超大規模雲端服務的快速部署。自動駕駛汽車、國防和醫療保健分析領域對人工智慧加速器的日益普及,持續推動著這一成長動能。 NVIDIA、英特爾和高通等主要廠商正積極開發先進的加速器解決方案,進一步增強了美國市場。美國對人工智慧領導力的重視以及聯邦政府對半導體製造業的支持,增強了其競爭優勢。
歐洲硬體加速市場洞察
受嚴格的資料保護法規以及邊緣人工智慧和企業運算加速器日益普及的推動,預計歐洲硬體加速市場在預測期內將實現強勁的複合年增長率。銀行、物流和製造業的數位化進程不斷推進,推動了對先進計算解決方案的需求。歐洲企業也正在強調節能環保的加速器,以回應歐盟的永續發展倡議。高效能運算中心和下一代汽車應用領域的應用尤為強勁,推動市場持續擴張。
英國硬體加速市場洞察
受金融科技、人工智慧驅動的醫療保健和雲端運算應用擴張的推動,英國硬體加速市場預計將大幅成長。資料中心投資的激增以及對安全、可擴展的企業級人工智慧解決方案的需求,正在推動市場滲透。此外,英國不斷發展的人工智慧研究生態系統以及產學研合作正在促進客製化加速器的創新。網路安全和即時分析的日益關注,進一步增強了金融、金融服務和保險業(BFSI)和政府部門的人工智慧應用。
德國硬體加速市場洞察
預計德國硬體加速市場將以顯著的複合年增長率擴張,這得益於該國強大的工業基礎以及在汽車和製造業創新領域的領先地位。硬體加速器越來越多地融入工業4.0、機器人技術和連網汽車技術,而低延遲人工智慧和即時決策在這些領域至關重要。德國對自主雲端基礎設施和安全數位生態系統的推動進一步推動了這些技術的採用。對量子運算和高效能叢集的不斷增長的投資,進一步鞏固了該國在歐洲加速器市場中的關鍵地位。
哪個地區的硬體加速市場成長最快?
受快速數位轉型、5G 網路擴張以及各行各業人工智慧應用激增的推動,亞太地區硬體加速市場預計將在 2025 年至 2032 年間以 9.14% 的複合年增長率保持最快成長。中國、日本和印度等國家正大力投資人工智慧研究、晶片設計和半導體生產,這使得亞太地區成為硬體加速器的主要消費和生產地區。智慧城市、自動駕駛出行和價格實惠的邊緣設備的興起,使得加速器在整個地區更加普及。
日本硬體加速市場洞察
由於日本在機器人、電子和先進運算領域的領先地位,日本硬體加速市場正蓬勃發展。隨著城鎮化進程的加速和人口老化的加劇,日本正在為醫療診斷、智慧基礎設施和自動駕駛系統部署人工智慧加速器。與物聯網設備(包括連網汽車和工廠自動化)的整合正在推動需求成長。政府對數位創新和下一代半導體開發的大力支持,進一步加速了專用硬體解決方案在日本的普及。
中國硬體加速市場洞察
2024年,中國硬體加速器市場佔據亞太地區最大份額,這得益於其不斷擴張的半導體生態系統、龐大的消費者群體以及政府為實現技術自主而採取的強有力舉措。中國在雲端運算、電子商務、監控和人工智慧應用領域對加速器的需求強勁。華為和地平線等本土企業的崛起,以及政府主導的智慧城市建設項目,正在推動這一成長。本土製造的加速器價格實惠,也擴大了企業和新創企業等的可及性。
硬體加速市場中的頂級公司有哪些?
硬體加速產業主要由知名公司主導,包括:
- 三星(韓國)
- 蘋果公司(美國)
- videantis GmbH(德國)
- 高通科技公司(美國)
- NVIDIA公司(美國)
- Premier Farnell 有限公司(英國)
- 美光科技公司(美國)
- Alphabet Inc.(美國)
- Veridify Security Inc.(美國)
- 微軟(美國)
- 賽靈思(美國)
- 英特爾公司(美國)
- 華為技術有限公司 (中國)
- Arm Limited(英國)
- 聯發科技股份有限公司(台灣)
- IBM公司(美國)
- 地平線機器人(中國)
- 思科系統公司(美國)
- Cadence 設計系統公司(美國)
- 甲骨文(美國)
全球硬體加速市場的最新發展是什麼?
- 2024年10月,AMD推出了Alveo UL3422,這是一款專為超低延遲金融應用打造的電子交易加速器。這款緊湊型卡採用AMD Virtex UltraScale+ FPGA,讓交易公司能夠以低於3奈秒的延遲執行交易。它為高頻交易提供了經濟高效的解決方案,使各種規模的組織都能獲得先進的效能。此次發布進一步鞏固了AMD致力於為金融業提供尖端加速解決方案的承諾。
- 2024年9月,英特爾發表了其下一代人工智慧產品,包括至強6處理器和Gaudi 3人工智慧加速器。至強6處理器可將人工智慧和高效能運算工作負載的效能提升一倍,而Gaudi 3則可將吞吐量提升20%,並帶來更佳的性價比優勢。這些創新專為資料中心和雲端環境中可擴展的人工智慧基礎架構量身定制,幫助企業提升效率、效能並優化成本。此次發布將使英特爾成為全球下一代人工智慧應用的強大推動者。
SKU-
Get online access to the report on the World's First Market Intelligence Cloud
- Interactive Data Analysis Dashboard
- Company Analysis Dashboard for high growth potential opportunities
- Research Analyst Access for customization & queries
- Competitor Analysis with Interactive dashboard
- Latest News, Updates & Trend analysis
- Harness the Power of Benchmark Analysis for Comprehensive Competitor Tracking
研究方法
数据收集和基准年分析是使用具有大样本量的数据收集模块完成的。该阶段包括通过各种来源和策略获取市场信息或相关数据。它包括提前检查和规划从过去获得的所有数据。它同样包括检查不同信息源中出现的信息不一致。使用市场统计和连贯模型分析和估计市场数据。此外,市场份额分析和关键趋势分析是市场报告中的主要成功因素。要了解更多信息,请请求分析师致电或下拉您的询问。
DBMR 研究团队使用的关键研究方法是数据三角测量,其中包括数据挖掘、数据变量对市场影响的分析和主要(行业专家)验证。数据模型包括供应商定位网格、市场时间线分析、市场概览和指南、公司定位网格、专利分析、定价分析、公司市场份额分析、测量标准、全球与区域和供应商份额分析。要了解有关研究方法的更多信息,请向我们的行业专家咨询。
可定制
Data Bridge Market Research 是高级形成性研究领域的领导者。我们为向现有和新客户提供符合其目标的数据和分析而感到自豪。报告可定制,包括目标品牌的价格趋势分析、了解其他国家的市场(索取国家列表)、临床试验结果数据、文献综述、翻新市场和产品基础分析。目标竞争对手的市场分析可以从基于技术的分析到市场组合策略进行分析。我们可以按照您所需的格式和数据样式添加您需要的任意数量的竞争对手数据。我们的分析师团队还可以为您提供原始 Excel 文件数据透视表(事实手册)中的数据,或者可以帮助您根据报告中的数据集创建演示文稿。

