Global Industrial Machine Vision Market
市场规模(十亿美元)
CAGR :
%
USD
11.29 Billion
USD
19.70 Billion
2024
2032
| 2025 –2032 | |
| USD 11.29 Billion | |
| USD 19.70 Billion | |
|
|
|
|
全球工業機器視覺市場細分,按組件(硬體和軟體)、產品(智慧相機/智慧感測器視覺系統、混合智慧相機視覺系統和基於 PC 的系統)、類型(2D 視覺系統、3D 視覺系統和 1D視覺系統)、部署(機器人單元和通用)、應用(缺陷檢測、產品檢測、表面檢測、包裝檢測、識別、OCR/OCV、模式識別、測量、引導和零件跟踪、網絡檢測等)、最終用戶(汽車、消費電子、食品和包裝、製藥、金屬、印刷、航空航太、玻璃、橡膠和塑膠、紡織、紡織、木材和紙張製造、太陽能產業板
工業機器視覺市場規模
- 2024 年全球工業機器視覺市場規模為112.9 億美元,預計到 2032 年將達到 197 億美元,預測期內 複合年增長率為 7.21%。
- 這種成長受到多種因素的推動,例如製造業越來越多地採用自動化技術、對品質檢驗和缺陷檢測的需求不斷增長,以及機器學習和影像處理技術的進步
工業機器視覺市場分析
- 工業機器視覺系統是製造環境中用於自動檢測、品質保證和機器人引導的關鍵技術,可為汽車、電子、製藥、食品和飲料等各個行業提供精度和效率
- 這些系統的需求很大程度上受到自動化、缺陷檢測準確性以及人工智慧整合成像技術進步的日益增長的需求的推動
- 預計到 2025 年,亞太地區將佔據工業機器視覺市場的主導地位,市場份額約為 47.8%,電子和汽車製造商將佔據主導地位,智慧工廠計畫的採用率也將持續提高。中國、日本、印度和韓國等國家是主要貢獻者
- 預計亞太地區也將成為預測期內成長最快的地區之一,這得益於政府對製造業自動化的支持、勞動力成本的增加以及各工業部門對數位轉型的投資增加
- 由於汽車製造業對生產線自動化和品質控制的需求很高,預計到 2025 年,該產業將佔據工業機器視覺市場的主導地位,佔 48.75% 的最大份額。作為現代汽車製造的關鍵組成部分,機器視覺系統提高了檢查、組裝和零件識別等過程的精度
報告範圍和工業機器視覺市場細分
|
屬性 |
工業機器視覺關鍵市場洞察 |
|
涵蓋的領域 |
|
|
覆蓋國家 |
北美洲
歐洲
亞太
中東和非洲
南美洲
|
|
主要市場參與者 |
|
|
市場機會 |
|
|
加值資料資訊集 |
除了對市場價值、成長率、細分、地理覆蓋範圍和主要參與者等市場情景的洞察之外,Data Bridge Market Research 策劃的市場報告還包括進出口分析、生產能力概覽、生產消費分析、價格趨勢分析、氣候變遷情景、供應鏈分析、價值鏈分析、原材料/消耗品概覽、供應商選擇標準、PESTLE 分析、波特分析和監管框架。 |
工業機器視覺市場趨勢
“工業自動化中人工智慧、深度學習和3D視覺系統的整合”
- 工業機器視覺市場的一個突出趨勢是人工智慧 (AI)、深度學習演算法和 3D 視覺系統的日益融合,以實現製造過程中的即時決策和精確自動化
- 這些創新使系統能夠檢測複雜模式、對缺陷進行分類,並適應傳統基於規則的系統可能無法有效處理的各種條件,從而顯著提高機器視覺性能
- 例如,現代 3D 視覺技術提供深度感知和體積分析,從而實現諸如箱體拾取、機器人引導以及不規則形狀物體的品質控制等高精度應用
- 這些進步正在改變工業自動化格局,降低錯誤率,提高生產效率,並推動汽車、電子、包裝和物流產業對智慧視覺系統的需求
工業機器視覺市場動態
司機
“製造業對品質檢測和自動化的需求不斷增長”
- 現代製造業越來越重視品質保證、製程優化和缺陷檢測,這極大地促進了對工業機器視覺系統的需求增加
- 隨著各行各業擁抱自動化,機器視覺在實現即時偵測、精密測量和機器人引導方面發揮關鍵作用,確保了生產線的一致性和可靠性
- 汽車、電子、製藥、食品飲料等行業都嚴重依賴機器視覺系統來滿足嚴格的監管和品質標準
例如,
- 2023 年 10 月,康耐視公司報告稱,由於消費者對產品可靠性和快速訂單履行的期望不斷提高,電子和物流領域對視覺系統的需求激增
- 由於對自動化品質控制的日益關注,全球製造生態系統中工業機器視覺系統的採用大幅增加,以提高生產力、最大限度地減少錯誤並降低勞動力成本
機會
“透過人工智慧整合推進工業機器視覺”
- 人工智慧工業機器視覺系統可以增強製造過程中的物體檢測、自動化和品質控制,提高營運效率和精度
- 人工智慧演算法可以分析即時影像以識別缺陷、監控生產線並追蹤產品質量,為製造商提供即時回饋,以便在問題升級之前解決問題
- 人工智慧視覺系統還可以透過分析設備性能和識別潛在故障來協助預測性維護,從而減少停機時間和維護成本
例如,
- 2024 年 12 月,西門子與一家人工智慧軟體公司合作,將人工智慧驅動的工業機器視覺融入西門子的製造工廠。人工智慧系統透過識別產品缺陷並自動調整生產參數來保持一致的質量,從而提供即時品質控制。此次整合使生產效率提高了 15%,產品缺陷減少了 20%
- 人工智慧在工業機器視覺系統中的整合還可以提高資源利用率、加快生產週期並減少浪費。透過利用人工智慧分析大量視覺數據的能力,製造商可以優化生產線,減少人為錯誤,並確保產品品質的一致性
克制/挑戰
“高昂的設備成本阻礙市場滲透”
- 工業機器視覺系統的高成本對其廣泛採用構成了重大障礙,特別是對於預算有限的中小型企業 (SME)
- 這些先進的視覺系統對於自動化品質控制和增強製造流程至關重要,其價格範圍從數萬美元到數十萬美元不等,具體取決於系統的複雜性和功能
- 這些系統所需的大量資金投入可能會阻礙小公司升級其設備,從而導致依賴人工檢查或過時的機器視覺解決方案
例如,
- 2024 年 10 月,國際自動化學會 (ISA) 的一份報告強調了小型製造公司在考慮採用人工智慧工業機器視覺系統時面臨的挑戰。報告強調,雖然大公司可以承擔高額的初始投資,但許多中小企業卻難以承擔將人工智慧系統整合到其營運所需的成本,減緩了整個產業的採用率
- 因此,這種財務障礙可能導致市場成長放緩,並阻礙先進機器視覺系統的更廣泛採用,特別是在成本敏感的行業,如小規模製造業或新興市場的企業
工業機器視覺市場範圍
市場根據組件、產品、類型、部署、應用和最終用戶進行細分。
|
分割 |
細分 |
|
按組件 |
|
|
按產品 |
|
|
按類型 |
|
|
按部署 |
|
|
按應用 |
|
|
按最終用戶 |
|
預計到 2025 年,汽車製造業將佔據市場主導地位,並在最終用戶領域中佔有最大份額
由於汽車製造業對生產線自動化和品質控制的需求很高,預計到 2025 年,該產業將佔據工業機器視覺市場的主導地位,佔 48.75% 的最大份額。作為現代汽車製造的關鍵組成部分,機器視覺系統提高了檢查、組裝和零件識別等過程的精確度。對車輛安全功能的需求不斷增長,加上機器視覺技術的進步,推動了這些系統在汽車生產中的應用。汽車工廠自動化程度的提高和汽車設計日益複雜,進一步鞏固了該領域在工業機器視覺市場的主導地位。
預計模式識別將在預測期內佔據應用領域的最大份額
到 2025 年,模式識別領域預計將在工業機器視覺市場佔據主導地位,佔據 50.62% 的最大市場份額,因為它能夠增強製造過程中的品質控制、檢查和自動化。模式識別系統對於即時識別和分類物體、缺陷和異常至關重要,使製造商能夠保持一致的產品品質並優化生產效率。隨著行業對精度和速度的要求越來越高,模式識別系統(尤其是與人工智慧和深度學習技術的結合)正在推動市場成長。產品日益複雜以及汽車、電子和製藥等行業對高品質標準的需求進一步促進了基於模式識別的機器視覺系統在市場上佔據主導地位。
工業機器視覺市場區域分析
“亞太地區佔據工業機器視覺市場最大份額”
- 預計到 2025 年,亞太地區將佔據工業機器視覺市場的主導地位,市佔率約 47.8%
- 該地區受到快速工業化、日益普及的自動化以及對製造精度的需求的推動
- 中國佔據亞太地區工業機器視覺市場約 45% 的份額,得益於其大規模製造業和人工智慧機器視覺系統的高度採用
- 市場受益於智慧製造的大量投資以及政府對汽車、電子和半導體等產業自動化的支持
- 各行業對缺陷檢測、品質控制和生產優化的需求不斷增長,進一步推動了市場成長
- 亞太地區製造工廠對人工智慧和機器人技術的採用正在加速,這有助於該地區佔據市場主導地位
“亞太地區預計將實現工業機器視覺市場最高複合年增長率”
- 受快速工業化、不斷增長的自動化需求以及先進機器視覺系統日益普及的推動,亞太地區預計將成為工業機器視覺市場成長率最高的地區
- 中國、印度和日本等國家憑藉其強大的製造業基礎、對生產精度的高要求以及對自動化技術的大量投資,正成為關鍵市場
- 中國憑藉著龐大的製造業和對自動化的重視,持續引領市場。中國越來越多地採用人工智慧機器視覺系統進行品質控制和生產優化,預計到 2025 年,這一市場份額將達到 42.3%。
- 印度和日本擁有強大的製造業,並且越來越重視智慧工廠解決方案,因此工業機器視覺的應用也顯著成長。以先進的機器人和自動化技術而聞名的日本預計將佔據相當大的市場份額,而印度預計將因汽車、電子和製藥等各行業對自動化的需求不斷增加而實現快速增長
- 亞太市場受益於政府支持自動化的措施增加以及全球工業機器視覺參與者的日益增加。因此,該地區將在全球工業機器視覺市場中經歷最高的複合年增長率,進一步鞏固其主導地位
工業機器視覺市場佔有率
市場競爭格局提供了競爭對手的詳細資訊。詳細資訊包括公司概況、公司財務狀況、收入、市場潛力、研發投資、新市場計劃、全球影響力、生產基地和設施、生產能力、公司優勢和劣勢、產品發布、產品寬度和廣度、應用優勢。以上提供的數據點僅與公司對市場的關注有關。
市場中主要的市場領導者有:
- 基恩士公司(日本)
- 歐姆龍株式會社(日本)
- 索尼半導體解決方案公司(日本)
- 康耐視公司(美國)
- SICK AG(美國)
- Teledyne FLIR LLC(美國)
- 美國國家儀器公司(美國)
- 巴斯勒股份公司(德國)
- ISRA VISION(德國)
- 英特爾公司(美國)
- 德州儀器公司(美國)
- Cadence 設計系統公司(美國)
- 自動辨識系統(英國)有限公司(英國)
- MV ASIA Infomatrix Pte Ltd(新加坡)
- Ceva Inc.(美國)
- Soda Vision(新加坡),
- The Imaging Source, LLC(美國)
- Kalypso:羅克韋爾自動化公司(美國)
- Qualitas Technologies(印度)
- Integro Technologies Corp.(美國)
全球工業機器視覺市場的最新發展
- 2024年7月,歐姆龍公司推出了其FH視覺系統和FHV7智慧相機的軟體更新,整合了Digimarc解碼技術,以增強數位產品識別。此次更新可使用數位浮水印進行高速包裝驗證,每分鐘可驗證超過 2,000 個零件。這種整合提高了檢測精度、處理速度、相機靈活性、冗餘度和檢查能力,強化了歐姆龍對工業自動化創新的承諾。這項進步專為消費品製造商設計,並提高了生產的品質保證和效率
- 2024 年 6 月,SICK AG 推出了 Inspector83x 2D 視覺感測器,這是用於缺陷檢測、分類和 OCR/OCV 等自動化檢查任務的獨立解決方案。這款先進系統採用人工智慧和基於規則的演算法相結合的方式,每秒最多可處理 15 次檢查。由於 AI 訓練只需要幾張影像,使用者可以直接在裝置上設定檢查。該感測器具有高達 5 MPixel 的解析度、內建照明、四核心 CPU、雙埠乙太網路、C 型鏡頭螺紋和外部照明支援。它預先安裝了 SICK Nova,這是該公司的可配置機器視覺軟體
- 2024 年 4 月,康耐視公司推出了 In-Sight L38 3D 視覺系統,這是全球首款人工智慧 3D 視覺系統,旨在實現製造自動化中的快速部署和可靠檢查。該系統整合了AI、2D和3D視覺技術,產生獨特的投影影像,簡化了訓練並發現了傳統2D成像無法看到的特徵。透過嵌入式人工智慧工具,它提高了檢測精度、測量精度和操作效率,為工業自動化樹立了新標準
- 2024 年 2 月,歐姆龍自動化在印度推出了 TM S 系列協作機器人,旨在提高共享工作空間的工廠效率。這些機器人具有更快的關節和更廣泛的安全措施,實現了人與機器之間的無縫合作。憑藉先進的運動控制,它們可以提高物流、消費品和數位硬體等各行業的精度、靈活性和生產力。其緊湊的設計可以輕鬆整合到現有的工作流程中,使自動化更容易實現
- 2023 年 3 月,基恩士公司推出了 VS 系列視覺系統,旨在透過先進的影像處理、高速檢查和用戶友好的操作來增強工業自動化。該系統提高了製造環境中的品質控制和效率,提供了基於人工智慧和規則的視覺工具,用於精確檢查。它具有光學變焦功能,可根據各種應用進行靈活調整。 VS 系列體現了 Keyence 致力於開發尖端視覺技術,滿足多樣化的工業需求
SKU-
Get online access to the report on the World's First Market Intelligence Cloud
- Interactive Data Analysis Dashboard
- Company Analysis Dashboard for high growth potential opportunities
- Research Analyst Access for customization & queries
- Competitor Analysis with Interactive dashboard
- Latest News, Updates & Trend analysis
- Harness the Power of Benchmark Analysis for Comprehensive Competitor Tracking
研究方法
数据收集和基准年分析是使用具有大样本量的数据收集模块完成的。该阶段包括通过各种来源和策略获取市场信息或相关数据。它包括提前检查和规划从过去获得的所有数据。它同样包括检查不同信息源中出现的信息不一致。使用市场统计和连贯模型分析和估计市场数据。此外,市场份额分析和关键趋势分析是市场报告中的主要成功因素。要了解更多信息,请请求分析师致电或下拉您的询问。
DBMR 研究团队使用的关键研究方法是数据三角测量,其中包括数据挖掘、数据变量对市场影响的分析和主要(行业专家)验证。数据模型包括供应商定位网格、市场时间线分析、市场概览和指南、公司定位网格、专利分析、定价分析、公司市场份额分析、测量标准、全球与区域和供应商份额分析。要了解有关研究方法的更多信息,请向我们的行业专家咨询。
可定制
Data Bridge Market Research 是高级形成性研究领域的领导者。我们为向现有和新客户提供符合其目标的数据和分析而感到自豪。报告可定制,包括目标品牌的价格趋势分析、了解其他国家的市场(索取国家列表)、临床试验结果数据、文献综述、翻新市场和产品基础分析。目标竞争对手的市场分析可以从基于技术的分析到市场组合策略进行分析。我们可以按照您所需的格式和数据样式添加您需要的任意数量的竞争对手数据。我们的分析师团队还可以为您提供原始 Excel 文件数据透视表(事实手册)中的数据,或者可以帮助您根据报告中的数据集创建演示文稿。

