Global Mlops Market
市场规模(十亿美元)
CAGR :
%
USD
2.19 Billion
USD
34.21 Billion
2024
2032
| 2025 –2032 | |
| USD 2.19 Billion | |
| USD 34.21 Billion | |
|
|
|
|
全球 MLOps 市場細分,按組件(平台和服務)、部署模式(本地、雲端和混合)、組織規模(大型企業、中小型企業 (SME))、行業垂直領域(金融服務 (BFSI)、製造業、資訊技術 (IT) 和電信、零售和電子商務、醫療保健等)- 行業趨勢和預測到 2032 年
MLOps 市場規模
- 2024 年全球 MLOps 市場規模為21.9 億美元 ,預計 到 2032 年將達到 342.1 億美元,預測期內 複合年增長率為 41.00%
- 市場成長很大程度上得益於各行各業對人工智慧 (AI) 和機器學習 (ML) 的日益採用,從而產生了對簡化模型部署和生命週期管理的需求
- 機器學習工作流程自動化(包括模型訓練、監控和再訓練)的需求不斷增長,進一步加速了 MLOps 平台和工具的採用
MLOps市場分析
- 隨著各組織尋求大規模實施機器學習模型,確保可靠性、可重複性和治理能力,MLOps 市場正在快速成長
- 基於雲端的 MLOps 解決方案因其可擴展性以及與現有 DevOps 管道的整合而越來越受到關注,對大型企業和中小企業都具有吸引力
- 北美在 MLOps 市場佔據主導地位,2024 年的收入份額最高,為 41%,這得益於企業對人工智慧和機器學習的大力採用,以及主要技術提供商和先進雲端基礎設施的存在
- 預計亞太地區將在全球MLOps市場中實現最高成長率,這得益於人工智慧技術的大規模採用、雲端平台投資的增加、IT 服務的擴展以及該地區作為全球數位轉型和創新中心的作用
- 平台細分市場在2024年佔據了最大的市場收入份額,這得益於對簡化機器學習模型資料準備、訓練、部署和監控的整合解決方案日益增長的需求。這些平台確保了可擴展性、可重複性和合規性,使其成為大規模企業採用的首選。
報告範圍和 MLOps 市場細分
|
屬性 |
MLOps 關鍵市場洞察 |
|
涵蓋的領域 |
|
|
覆蓋國家 |
北美洲
歐洲
亞太
中東和非洲
南美洲
|
|
主要市場參與者 |
|
|
市場機會 |
• MLOps 與雲端原生平台的整合 |
|
加值資料資訊集 |
除了市場價值、成長率、市場區隔、地理覆蓋範圍、市場參與者和市場情景等市場洞察之外,Data Bridge 市場研究團隊策劃的市場報告還包括深入的專家分析、進出口分析、定價分析、生產消費分析和 pestle 分析。 |
MLOps市場趨勢
自動化和可擴展機器學習操作的興起
• 機器學習 (ML) 領域日益向自動化工作流程轉變,透過實現即時模型部署、監控和治理,MLOps 格局正在改變。這些平台的可擴展性和速度使企業能夠大規模地實施 AI,從而加快創新速度並改善決策。
• 高效管理海量機器學習模式的需求日益增長,這加速了雲端原生MLOps解決方案和整合DevOps管線的採用。這些平台對於注重持續再訓練和部署的企業尤其有效,能夠確保模型保持準確性和相關性。
• 開源 MLOps 工具價格實惠且易於獲取,對中小企業 (SME) 極具吸引力,使其能夠更廣泛地參與 AI 驅動的轉型。這不僅提高了組織敏捷性,還降低了實施 AI 的技術和財務障礙。
• 例如,2023 年,北美多家金融機構實施了自動化 MLOps 管道來監控詐欺偵測模型,從而減少誤報並提高交易安全性,同時降低營運成本
• 雖然自動化和可擴展性正在加速MLOps的採用,但其影響力取決於持續的創新、強大的資料治理以及與現有企業IT系統的整合。供應商必須專注於互通性、安全性和使用者友善的解決方案,才能充分利用這項需求。
MLOps 市場動態
司機
企業對人工智慧的採用和對模型生命週期管理的需求不斷增加
• 人工智慧和機器學習在各行各業的快速應用,促使企業投資 MLOps,以實現高效的模型生命週期管理。從訓練到部署,MLOps 確保可靠性、可重複性和合規性,使企業能夠負責任地擴展 AI 並快速推動創新
• 各組織越來越意識到非託管機器學習模型的風險,包括偏差、漂移和監管不合規,這凸顯了強大的 MLOps 框架的必要性。透過應對這些挑戰,MLOps 可以幫助企業維持模型效能,防範聲譽風險,並確保對 AI 驅動決策的信任。
• 公共和私營部門的舉措,例如以人工智慧為重點的投資、雲端基礎設施擴展以及負責任的人工智慧監管指南,正在加強MLOps生態系統。這些努力不僅鼓勵企業採用最佳實踐,而且還在塑造道德、透明和安全的人工智慧部署的全球標準。
• 例如,2022年,美國政府宣布增加對AI基礎設施和治理的投入,這提振了醫療、國防和金融等產業對企業級MLOps平台的需求。這項措施反映了將AI創新與問責制和長期競爭力相結合的全球趨勢。
• 雖然採用率正在上升,但持續成長取決於解決標準化、資料安全和員工培訓等問題,以確保負責任地廣泛使用MLOps解決方案。企業必須在快速部署和負責任的治理之間取得平衡,才能充分釋放AI的變革潛力。
克制/挑戰
MLOps 實施成本高且人才短缺
• 實施企業級 MLOps 平台(尤其是需要高階雲端基礎設施和監控工具的平台)的高成本仍然是小型企業和新興市場面臨的一大障礙。這些成本通常不僅涵蓋軟體,還包括整合、合規性和持續維護,從而限制了更廣泛的可及性。
• 在許多地區,缺乏能夠管理複雜 MLOps 流程(包括模型部署、監控和合規流程)的熟練專業人員。人才短缺為尋求擴展 AI 規模的企業帶來了瓶頸,迫使它們依賴外部顧問或資質不足的員工。
• 整合挑戰進一步限制了市場滲透率,因為許多企業仍在運行與現代 MLOps 平台缺乏相容性的舊式 IT 系統。這種差距導致實施時間更長、成本增加、投資回報延遲,阻礙了小型企業大規模採用 AI。
• 例如,2023年,亞太地區的幾家製造公司報告稱,由於熟練勞動力有限,以及雲端遷移和平台整合相關的高昂成本,MLOps 的採用面臨挑戰。這些困難凸顯了已開發市場和發展中市場在 MLOps 採用速度上的不均衡。
• 儘管 MLOps 技術不斷發展,但解決成本、整合和人才挑戰仍然至關重要。供應商和企業必須優先考慮低程式碼解決方案、培訓計劃和混合部署模型,以彌合差距、降低複雜性並釋放全球 MLOps 市場的全部潛力。
MLOps 市場範圍
市場根據組件、部署模式、組織規模和行業垂直領域進行細分。
- 按組件
根據組件,MLOps 市場細分為平台和服務。平台部分在 2024 年佔據了最大的市場收入份額,這得益於對簡化機器學習模型的資料準備、訓練、部署和監控的整合解決方案的需求不斷增長。這些平台確保了可擴展性、可重複性和合規性,使其成為大型企業採用的首選。
預計服務業將在2025年至2032年期間實現最快成長,這得益於對諮詢、整合和託管服務的日益依賴。企業越來越多地轉向服務供應商,以克服技能短缺和複雜的部署挑戰,從而加速人工智慧的採用,同時優化成本和營運效率。
- 按部署模式
根據部署模式,MLOps 市場細分為本地部署、雲端部署和混合部署。 2024 年,雲端部署佔據了最大的市場份額,這得益於可擴展雲端基礎設施的日益普及,這使得企業能夠更快地訓練和部署機器學習模型,同時最大限度地降低前期成本。基於雲端的 MLOps 解決方案還能與現代資料管道無縫集成,提供靈活性和可存取性。
預計混合雲領域將在2025年至2032年間實現最快的成長,這得益於企業尋求在雲端可擴展性和本地基礎設施安全性之間取得平衡。混合MLOps模型越來越多地被銀行、國防和醫療保健等受到嚴格監管的行業所採用,這些行業敏感資料處理至關重要,同時仍能受益於雲端創新。
- 按組織規模
根據組織規模,MLOps 市場可細分為大型企業和中小型企業 (SME)。大型企業在 2024 年佔據了最大的收入份額,因為它們是企業級 AI 解決方案的早期採用者,並且擁有投資先進 MLOps 平台的資源。這些組織能夠將 AI 計劃擴展到多個部門,從而提高生產力和創新能力。
預計中小企業領域將在2025年至2032年期間實現最快的成長,這得益於基於雲端的MLOps解決方案和低程式碼平台日益經濟實惠的推動。中小企業正在採用MLOps來改善決策、簡化運營,並在不產生高昂基礎設施成本的情況下獲得競爭優勢,從而進一步推動全球人工智慧應用的普及。
- 按行業垂直
根據行業垂直領域,MLOps 市場細分為金融服務 (BFSI)、製造業、資訊科技 (IT) 和電信、零售和電子商務、醫療保健等。受人工智慧在詐欺偵測、風險評估和合規監控領域日益廣泛的應用所推動,BFSI 領域在 2024 年佔據了市場主導地位。對強大的模型治理和即時監控的需求進一步增強了該領域對 MLOps 的需求。
預計醫療保健領域將在2025年至2032年期間實現最快的成長,這得益於人工智慧在醫學影像、診斷和個人化治療領域的日益普及。 MLOps解決方案有助於確保模型準確性、法規遵從性和患者資料安全,這對於擴展醫療保健領域的AI應用至關重要。製造業和零售業等其他行業也正在迅速整合MLOps,以提升營運效率、供應鏈管理和客戶體驗。
MLOps市場區域分析
• 北美在 MLOps 市場佔據主導地位,2024 年的收入份額最高,為 41%,這得益於企業大力採用人工智慧和機器學習,以及主要技術供應商和先進雲端基礎設施的存在。
• 該地區的企業重視 MLOps 平台的可靠性、可擴充性和合規性功能,確保安全且有效率的 AI 模型生命週期管理。
• 對人工智慧創新的高投入、有利的政府政策以及金融、醫療保健和 IT 等行業的強勁需求進一步支持了這一領導地位,鞏固了北美作為 MLOps 採用領先中心的地位。
美國 MLOps 市場洞察
2024年,美國MLOps市場佔據了北美最大的收入份額,這得益於快速的數位轉型、雲端AI解決方案的部署增加以及企業對自動化的旺盛需求。企業越來越多地利用MLOps來簡化AI工作流程、降低營運風險並確保遵守不斷變化的資料法規。此外,MLOps與AWS、Microsoft Azure和Google Cloud等先進雲端生態系統的整合,持續推動BFSI、零售和醫療保健等產業的成長。
歐洲 MLOps 市場洞察
預計歐洲 MLOps 市場將在 2025 年至 2032 年間實現最快增長,這主要得益於 GDPR 等嚴格的資料保護法規以及對安全且可解釋的 AI 模型日益增長的需求。金融服務、製造業和政府部門對 AI 的採用日益增多,這推動了對可擴展 MLOps 平台的需求。歐洲企業也強調負責任的 AI 部署、永續性和合乎道德的 AI 實踐,鼓勵公共和私營部門廣泛整合 MLOps。
英國 MLOps 市場洞察
英國MLOps市場預計將在2025年至2032年間實現最快的成長,這得益於其在人工智慧研究、金融科技創新和數位優先業務策略方面的強勁投資。對監管合規性、模型透明度和安全資料管理的日益關注,正在推動企業級MLOps解決方案的需求。此外,英國蓬勃發展的IT服務業和混合雲基礎設施的廣泛採用,也進一步加速了市場的成長。
德國 MLOps 市場洞察
預計在2025年至2032年期間,德國MLOps市場將迎來最快的成長速度,這得益於該國對工業4.0、智慧製造和自動化的重視。德國企業正越來越多地將MLOps整合到其AI流程中,以提升營運效率、預測分析能力和供應鏈優化。對永續性、合規性和資料安全的關注也正在塑造對MLOps解決方案的需求,尤其是在工業、汽車和醫療保健應用領域。
亞太地區 MLOps 市場洞察
受數位轉型的快速推進、雲端運算應用的興起以及中國、日本和印度等國家不斷擴大的人工智慧投資的推動,亞太地區MLOps市場預計將在2025年至2032年間實現最快的成長。該地區的企業越來越多地採用MLOps來管理大規模資料驅動的應用程序,簡化人工智慧部署,並提高可擴展性。隨著亞太地區逐漸成為人工智慧技術的消費和生產中心,MLOps平台的經濟性和可近性預計將加速中小企業和大型企業的採用。
日本 MLOps 市場洞察
由於日本注重自動化、機器人技術和高科技創新,預計日本MLOps市場將在2025年至2032年間實現最快的成長。日本企業正在將MLOps應用於製造、零售和醫療保健領域,並高度重視效率、準確性和安全性。 MLOps與物聯網和智慧基礎設施專案的整合也正在推動其應用。此外,日本勞動力的老化正在推動企業採用人工智慧驅動的自動化,從而進一步推動MLOps平台的需求。
中國 MLOps 市場洞察
2024年,中國MLOps市場佔據了亞太地區最大的市場收入份額,這得益於政府對人工智慧的大力投資、雲端基礎設施的不斷擴張以及電子商務、金融和製造等行業的快速應用。中國正逐漸成為人工智慧創新領域的全球領導者,而MLOps正是擴展和部署機器學習應用的關鍵支柱。智慧城市的興起,加上強大的國內技術供應商,進一步推動了MLOps的普及,使中國成為全球市場中舉足輕重的參與者。
MLOps市佔率
MLOps 產業主要由知名公司主導,包括:
- Databricks(美國)
- Domino 資料實驗室(美國)
- Kubeflow(Google出品)(美國)
- Amazon SageMaker(美國)
- 圖紙空間漸層(美國)
- Fiddler AI(美國)
- MLflow(由 Databricks 提供)(美國)
- 瓦洛海(芬蘭)
- 厚皮動物(美國)
- ZenML(德國)
全球 MLOps 市場的最新發展
- 2025年3月,惠普企業 (HPE) 與 NVIDIA 合作,在 NVIDIA AI Computing by HPE 產品組合下推出了全新的企業 AI 解決方案,其中包括整合 NVIDIA AI 資料平台的 HPE Private Cloud AI。這些解決方案基於 NVIDIA Blackwell 架構,可提供增強的效能、安全性和可觀察性工具,同時支援快速的 AI 開發和部署。此舉旨在加速企業對生成式和代理式 AI 的採用,縮短價值實現時間並促進創新,從而提升兩家公司在 AI 和 MLOps 領域的競爭力。
- 2024年7月,微軟為Azure推出了MLOps v2架構框架,這是一個端到端的解決方案,旨在簡化跨傳統機器學習、電腦視覺和自然語言處理工作負載的機器學習操作。該框架整合了行業最佳實踐,提供用於資料管理、模型開發、部署和監控的模組化元件。透過確保可重複、安全且可立即投入生產的AI工作流程,該框架的發布使企業能夠以更高的可擴展性和效率加速其AI計劃,從而鞏固Azure在全球MLOps市場的地位。
- 2021 年 5 月,Google Cloud 發布了 Vertex AI,這是一個託管機器學習平台,整合了用於建置、訓練和部署機器學習模型的多項服務。該平台旨在簡化 AI 生命週期,降低營運複雜性,並加速模型開發。 Vertex AI 幫助企業更輕鬆、更快速、更可擴展地採用 AI,在鞏固 Google 在企業 AI 和 MLOps 市場的影響力方面發揮了重要作用。
SKU-
Get online access to the report on the World's First Market Intelligence Cloud
- Interactive Data Analysis Dashboard
- Company Analysis Dashboard for high growth potential opportunities
- Research Analyst Access for customization & queries
- Competitor Analysis with Interactive dashboard
- Latest News, Updates & Trend analysis
- Harness the Power of Benchmark Analysis for Comprehensive Competitor Tracking
研究方法
数据收集和基准年分析是使用具有大样本量的数据收集模块完成的。该阶段包括通过各种来源和策略获取市场信息或相关数据。它包括提前检查和规划从过去获得的所有数据。它同样包括检查不同信息源中出现的信息不一致。使用市场统计和连贯模型分析和估计市场数据。此外,市场份额分析和关键趋势分析是市场报告中的主要成功因素。要了解更多信息,请请求分析师致电或下拉您的询问。
DBMR 研究团队使用的关键研究方法是数据三角测量,其中包括数据挖掘、数据变量对市场影响的分析和主要(行业专家)验证。数据模型包括供应商定位网格、市场时间线分析、市场概览和指南、公司定位网格、专利分析、定价分析、公司市场份额分析、测量标准、全球与区域和供应商份额分析。要了解有关研究方法的更多信息,请向我们的行业专家咨询。
可定制
Data Bridge Market Research 是高级形成性研究领域的领导者。我们为向现有和新客户提供符合其目标的数据和分析而感到自豪。报告可定制,包括目标品牌的价格趋势分析、了解其他国家的市场(索取国家列表)、临床试验结果数据、文献综述、翻新市场和产品基础分析。目标竞争对手的市场分析可以从基于技术的分析到市场组合策略进行分析。我们可以按照您所需的格式和数据样式添加您需要的任意数量的竞争对手数据。我们的分析师团队还可以为您提供原始 Excel 文件数据透视表(事实手册)中的数据,或者可以帮助您根据报告中的数据集创建演示文稿。

