Global Multi Omics Platforms In Rare Disease Research Market
市场规模(十亿美元)
CAGR :
%
USD
1.18 Billion
USD
3.89 Billion
2024
2032
| 2025 –2032 | |
| USD 1.18 Billion | |
| USD 3.89 Billion | |
|
|
|
|
全球罕見疾病研究市場中的多組學平台細分,按平台類型(基因組學平台、蛋白質組學平台、轉錄組學平台、代謝組學平台、表觀基因組學平台等)、數據整合方法(綜合多組學分析、基於相關性的分析、基於網絡的集成、基於機器學習的整合、模組化/分層方法等)、組學類別(單組學、雙組學和多組學)、應用(罕見遺傳疾病診斷、生物標誌物發現、藥物開發和靶點識別、個人化醫療、產前和新生兒篩檢、研究和學術用途等)-產業趨勢和預測到 2032 年
罕見疾病研究市場規模中的多組學平台
- 2024 年全球罕見疾病研究多組學平台市場規模為11.8 億美元 ,預計 到 2032 年將達到 38.9 億美元,預測期內 複合年增長率為 16.00%。
- 市場成長主要得益於基因組學、轉錄組學、蛋白質組學、代謝組學和其他組學技術的日益普及和技術進步,從而提高了學術和臨床領域罕見疾病研究的數位化和整合程度
- 此外,人們對精準、數據豐富且整合的平台的需求日益增長,以了解罕見疾病複雜的生物學機制,這使得多組學方法成為現代生物醫學研究的關鍵支柱。這些因素正在加速多組學平台在罕見疾病研究解決方案中的應用,從而顯著促進該行業的成長。
罕見疾病研究市場分析中的多組學平台
- 多組學平台正成為罕見疾病研究中日益重要的工具,提供基因組學、轉錄組學、蛋白質組學和代謝組學的綜合洞見,從而實現更精準的診斷、更深入的疾病理解和更個性化的治療策略。這些平台的應用正在改變罕見遺傳疾病在研究和臨床環境中的識別和管理方式。
- 罕見疾病研究中對多組學方法的需求不斷增長,這得益於罕見遺傳病患疾病率的上升、次世代定序 (NGS) 能力的不斷擴展,以及政府機構、學術聯盟和製藥公司對資料豐富、多維研究方法的支持日益增強
- 北美在罕見疾病研究市場的多組學平台中佔據主導地位,2024年的收入份額最高,達到38.0%,這得益於強大的研發基礎設施、精準醫療資金的增加以及關鍵基因組學和生物資訊公司的存在。美國繼續引領區域成長,這得益於罕見疾病臨床研究網絡 (RDCRN) 等舉措以及組學技術在臨床基因組學和轉化研究中的廣泛應用。
- 預計亞太地區將成為預測期內罕見疾病研究市場多組學平台成長最快的地區,2025 年至 2032 年的複合年增長率為 17.8%,這得益於醫療保健基礎設施的擴大、基於組學的診斷的投資增加以及中國、印度和日本等國家罕見病患病率的上升
- 多組學平台在罕見疾病研究市場中佔據主導地位,2024 年的市場份額為 42.7%,這得益於其能夠透過整合基因組學、蛋白質組學、轉錄組學和其他數據層,提供全面的系統生物學視角。它在理解罕見疾病的多因素特性方面備受青睞。
報告範圍和罕見疾病研究市場細分中的多組學平台
|
屬性 |
罕見疾病研究中的多組學平台關鍵市場洞察 |
|
涵蓋的領域 |
|
|
覆蓋國家 |
北美洲
歐洲
亞太
中東和非洲
南美洲
|
|
主要市場參與者 |
|
|
市場機會 |
|
|
加值資料資訊集 |
除了對市場價值、成長率、細分、地理覆蓋範圍和主要參與者等市場情景的洞察之外,Data Bridge Market Research 策劃的市場報告還包括深入的專家分析、定價分析、品牌份額分析、消費者調查、人口統計分析、供應鏈分析、價值鏈分析、原材料/消耗品概述、供應商選擇標準、PESTLE 分析、波特分析和監管框架。 |
罕見疾病研究市場趨勢中的多組學平台
透過整合組學技術提高便利性
- 全球罕見疾病研究市場多組學平台的一個重要且正在加速發展的趨勢是將多個組學層面(例如基因組學、轉錄組學、蛋白質組學、表觀基因組學和代謝組學)整合到統一的平台中。這種整合方法正在增強研究人員以更高的準確性和深度揭示複雜疾病機制和生物標記的能力。
- 例如,多組學平台能夠同時分析罕見疾病患者的基因突變、基因表現模式、蛋白質交互作用和代謝變化。這種全面的數據融合有助於識別新的治療標靶和個人化治療途徑。
- 在罕見疾病研究中,從有限的患者樣本中提取多維生物學見解的能力尤其重要,因為這類研究的隊列規模較小,數據稀缺現象普遍存在。這些平台優化了樣本利用率,同時提供了疾病生物學的整體觀點。
- 多組學整合也正在改進轉化研究中的預測模型和假設生成,使科學家能夠更有效地理解疾病的異質性和進展。基於雲端的平台和生物資訊學流程進一步簡化了數據分析,實現了跨全球研究網路的即時協作和數據共享。
- 這種融合高通量組學平台的趨勢正在從根本上重塑罕見疾病研究模式。它使製藥和生物技術公司能夠加快藥物研發進度,改善臨床試驗設計,並開發更有效的診斷方法。
- 學術機構、研究型醫院和生物技術公司對整合、可擴展且自動化的多組學平台的需求正在快速增長,因為他們希望深入了解罕見和極罕見的遺傳疾病
罕見疾病研究市場動態中的多組學平台
司機
罕見疾病發生率上升和精準醫療需求成長
- 全球罕見疾病負擔日益加重,加上對個人化和精準醫療的需求不斷增長,是加速多組學平台在罕見疾病研究中應用的關鍵驅動力。這些平台透過整合基因組學、轉錄組學、蛋白質組學和代謝組學數據,能夠全面了解疾病機制。
- 例如,賽默飛世爾科技於2024年4月推出了一款專為罕見疾病研究人員設計的全新整合組學解決方案,將新一代定序與先進的數據分析相結合,以加速診斷和治療發現。預計主要市場參與者的此類策略性進步將在預測期內顯著推動罕見疾病研究多組學平台市場的成長。
- 隨著研究人員和臨床醫生尋求更精準的診斷工具和更有針對性的治療方法,多組學技術能夠揭示與罕見疾病相關的複雜分子特徵,從而提供強大的解決方案。這有助於減少診斷延遲,並提高成功開發治療方案的可能性。
- 此外,政府和私人對罕見疾病研究計劃的資助不斷增加,加上罕見疾病臨床研究網絡 (RDCRN) 等國際合作,正在擴大學術和臨床環境中使用多組學能力的管道
- 人工智慧、機器學習和雲端運算與多組學平台的整合也使得數據解讀更快、更準確,進一步推動了專注於孤兒病的製藥公司、合約研究組織 (CRO) 和學術研究機構的採用
克制/挑戰
數據整合複雜性和高營運成本
- 將多個組學層面(基因組學、轉錄組學、蛋白質組學和代謝組學)整合到單一平台中,帶來了重大的技術和分析挑戰。這些挑戰包括數據異質性、樣本品質的差異性以及對標準化生物資訊學流程的需求,所有這些都可能阻礙其大規模應用。
- 例如,研究人員經常難以應對多組學資料的數量和複雜性,這需要先進的運算基礎設施、熟練的生物資訊學家和強大的儲存系統——這些資源可能並非所有機構都能輕易獲得
- 應對這些挑戰需要改善數據協調技術、建立可互通的平台,並持續投資於生物資訊培訓和基礎設施。 Qiagen 和 Illumina 等公司正在加大對簡化組學資料整合的軟體解決方案的投資,以支援罕見疾病的臨床應用。
- 此外,多組學研究的高昂營運成本(包括試劑、定序儀器和熟練勞動力)對中低收入國家的小型研究機構和設施構成了進入該領域的障礙。雖然預計成本會隨著技術進步而下降,但可負擔性仍然是一個關鍵問題。
- 透過協作研究模式、可擴展的雲端組學平台和開放取用資料集克服這些限制,將是實現多組學研究民主化和充分發揮其應對罕見疾病挑戰潛力的關鍵
罕見疾病研究市場範圍內的多組學平台
市場根據平台類型、資料整合方法、組學類別和應用進行細分。
- 依平台類型
根據平台類型,罕見疾病研究市場的多組學平台可細分為基因組學平台、蛋白質組學平台、轉錄組學平台、代謝組學平台、表觀基因組學平台及其他。基因組學平台佔據市場主導地位,2024 年收入份額最高,達到 34.5%,這得益於其在罕見疾病基因定序、突變檢測和早期診斷方面的廣泛應用。基因組學仍然是罕見疾病研究的基礎,為臨床和研發管線提供支援。
蛋白質體學平台領域預計將在2025年至2032年間以12.4%的複合年增長率保持最快增長,這得益於人們對罕見疾病中蛋白質水平表達、突變的功能影響以及生物標誌物識別的日益關注。蛋白質體學數據是基因組學見解的補充,對於更深入地理解機制至關重要。
- 按資料整合方法
根據資料整合方法,罕見疾病研究市場中的多組學平台可細分為整合多組學分析、基於相關性的分析、基於網路的整合、基於機器學習的整合、模組化/分層方法以及其他方法。整合多組學分析在2024年佔據了最大的市場份額,達到38.9%。研究人員越來越多地採用結合多個組學層面的整體方法,以獲得全面的生物學見解。它支援更準確的疾病建模和治療標靶識別。
預計從 2025 年到 2032 年,基於機器學習的整合領域將以 13.1% 的最快複合年增長率增長,這得益於人工智慧和計算生物學的進步,這些進步增強了模式識別、預測建模和複雜組學數據的自動解釋。
- 按組學類別
根據組學類別,罕見疾病研究市場中的多組學平台可細分為單組學、雙組學和多組學。多組學佔據主導地位,在2024年佔據最大的市場份額,達到42.7%,這得益於其能夠透過整合基因組學、蛋白質組學、轉錄組學和其他數據層,提供全面的系統生物學視角。它在理解罕見疾病的多因素特性方面備受青睞。
預計雙組學將在 2025 年至 2032 年間錄得最快的複合年增長率,達到 11.6%,這主要得益於注重成本的研究模式以及專注於特定疾病途徑的關聯組學(如基因組學 + 轉錄組學或蛋白質組學 + 代謝組學)的研究。
- 按應用
根據應用,罕見疾病研究市場的多組學平台可細分為罕見遺傳疾病診斷、生物標記發現、藥物開發與標靶識別、個人化醫療、產前及新生兒篩檢、研究與學術應用等。罕見遺傳疾病診斷在2024年以30.8%的最大收入份額引領市場,這得益於對早期、未確診及複雜罕見疾病的精準診斷的迫切需求。多組學技術可透過深度分子分析實現精準診斷。
隨著研究人員和臨床醫生越來越多地利用組學數據,根據患者的個別特徵量身定制治療方案,個人化醫療預計將在2025年至2032年期間以12.8%的複合年增長率快速增長。這一趨勢在表型異質性的罕見疾病亞型中尤為突出。
罕見疾病研究市場中的多組學平台區域分析
- 北美在罕見疾病研究市場的多組學平台中佔據主導地位,2024 年的收入份額最高,為 38.0%,這得益於強大的研究基礎設施、政府和私人對精準醫療的大量資助,以及領先的基因組學和生物資訊公司的高度集中
- 該地區還受益於早期採用先進的組學技術,以及針對罕見遺傳疾病的轉化和臨床研究的完善生態系統
- 罕見疾病臨床研究網絡 (RDCRN) 等合作研究網絡的擴展以及組學平台與診斷工作流程的整合,進一步鞏固了北美在罕見疾病創新和發現領域的領先地位
美國罕見疾病研究多組學平台市場洞察
2024年,美國罕見疾病研究多組學平台佔據北美罕見疾病研究多組學平台市場83%的最大收入份額。這主要歸功於美國積極投資新一代定序、單細胞分析以及其他基於組學的技術,這些技術涵蓋美國國立衛生研究院(NIH)支持的計劃和學術醫療中心。罕見疾病的日益流行,加上美國食品藥物管理局(FDA)孤兒藥資格認定計畫等有利的監管途徑,正加速研發進程。此外,大型生物技術中心以及專注於基因組學、蛋白質組學、代謝組學和轉錄組學的新創企業的存在,正在推動多組學平台的持續創新和商業化。
歐洲罕見疾病研究多組學平台市場洞察
預計歐洲罕見疾病研究市場的多組學平台將在整個預測期內穩步成長,這得益於泛歐洲罕見疾病計畫、早期診斷計畫以及公共衛生機構的大力支持。歐盟成員國透過歐洲罕見疾病聯合計畫 (EJP RD) 等計畫加強合作,正在改善資料整合和可近性。德國、英國和法國等國家正在投資組學驅動的人口健康研究和罕見疾病篩檢項目,支持市場的強勁擴張。
英國罕見疾病研究多組學平台市場洞察
英國罕見疾病研究市場預計的多組學平台將在預測期內實現顯著的複合年增長率,這得益於英國基因組學協會 (Genomics England) 和十萬基因組計劃 (100,000 Genomes Project) 等計劃的支持,這些計劃旨在利用全基因組測序徹底改變罕見疾病的診斷方式。英國國家醫療服務體系 (NHS) 正積極將組學平台整合到臨床路徑中,研究機構也正在進行國際合作,以加強罕見疾病資料收集和精準治療。對組學基礎設施的高度重視將繼續推動學術和臨床領域的需求。
德國罕見疾病研究多組學平台市場洞察
德國罕見疾病研究市場的多組學平台是歐洲多組學市場的關鍵貢獻者,其成長得益於生命科學研究的雄厚資金、高品質的醫療保健體係以及領先的生物資訊能力。政府支持的計畫支持罕見疾病認知、生物樣本庫以及人工智慧在組學數據分析中的應用,進一步推動了其應用。此外,學術機構與產業參與者之間的合作也正在推動罕見疾病治療領域的轉化研究。
亞太地區罕見疾病研究多組學平台市場洞察
亞太地區罕見疾病研究市場中的多組學平台預計將成為成長最快的地區,預計2025年至2032年的複合年增長率為17.8%。由於醫療保健投資的增加、認知度的提高以及中國、印度和日本等國家國家基因組學計畫的實施,該地區罕見疾病研究中組學平台的應用正在增加。政府主導的精準醫療計畫、與全球製藥公司的合作以及未確診罕見疾病負擔的日益加重,加速了使用多組學工具進行早期精準診斷的需求。
日本罕見疾病研究多組學平台市場洞察
日本罕見疾病研究市場的多組學平台正受到高額研發投入、政府大力支持以及人口快速老化的推動,這些因素加劇了早期發現遺傳疾病的緊迫性。諸如日本全球罕見疾病研究網絡倡議(J-RDNet)等國家級計畫促進了數據共享和組學整合,使日本在東亞地區罕見疾病發現和診斷領域多組學創新方面處於領先地位。
中國罕見疾病研究多組學平台市場洞察
2024年,中國罕見疾病研究多組學平台市場佔據了亞太地區罕見疾病研究多組學平台市場的最大收入份額。這一增長得益於基因組測序基礎設施的不斷擴展、組學技術的本土化生產以及醫院與生物技術公司之間日益增多的合作。中國對國家衛生登記和精準醫療計畫的重視,正推動整合組學在研究和臨床領域的廣泛應用,尤其是在兒科和遺傳性罕見疾病領域。
多組學平台在罕見疾病研究市場中的份額
罕見疾病研究產業的多組學平台主要由知名公司主導,包括:
- 賽默飛世爾科技公司(美國)
- Illumina公司(美國)
- QIAGEN(德國)
- 10x Genomics(美國)
- Bio-Rad Laboratories Inc.(美國)
- 安捷倫科技公司(美國)
- 布魯克(美國)
- 華大基因股份有限公司 (中國)
- F. Hoffmann-La Roche Ltd(瑞士)
- 珀金埃爾默(美國)
- 丹納赫公司(美國)
- 加州太平洋生物科學公司(美國)
- 基因泰克(美國)
- 沃特世公司(美國)
- 牛津奈米孔技術有限公司(英國)
全球罕見疾病研究市場多組學平台的最新發展
- 2024年8月,德國人類基因組-表型組檔案庫 (GHGA) 推出了其國家元資料目錄和檔案庫,以方便多家德國機構以符合FAIR標準的方式存取人類組學資料集。預計這項進展將透過提高歐洲組學基礎設施內數據的可發現性和互通性,大力支持罕見疾病的綜合多組學研究。
- 2025年5月,華大智造在米蘭舉行的歐洲人類遺傳學學會(ESHG)2025大會上發表了其全新的高通量多組學儀器-DNBSEQ-T1+和DNBelab C-YellowR 16。這些工具簡化了單細胞和多組學工作流程,最大限度地減少了人工幹預,從而加速了大規模罕見疾病研究和多層生物數據整合。
- 2025年5月,GenomeArc與臨床機構和學術團體合作,成立了「解決未解決的罕見疾病」聯盟,致力於解決未確診的罕見疾病病例。該聯盟旨在利用整合組學資料集,識別新的疾病機制,並改善針對複雜患者的個人化治療策略。
- 2025年7月,研究人員推出了BioNeuralNet,這是一個基於圖神經網路的強大框架,用於分析多組學網路。該開源工具透過將多組學資料嵌入到高效的圖表徵中,實現了罕見疾病中生物標記的準確識別和疾病建模。
- 2024年12月,GREGoR聯盟(闡明罕見疾病遺傳學的基因組學研究)取得了重大進展,分享了來自3000多個家庭的匿名基因組學和多組學數據。透過AnVIL平台向公眾開放數據,加速了合作研究,並支持全球未確診罕見疾病病例的診斷工作。
SKU-
Get online access to the report on the World's First Market Intelligence Cloud
- Interactive Data Analysis Dashboard
- Company Analysis Dashboard for high growth potential opportunities
- Research Analyst Access for customization & queries
- Competitor Analysis with Interactive dashboard
- Latest News, Updates & Trend analysis
- Harness the Power of Benchmark Analysis for Comprehensive Competitor Tracking
研究方法
数据收集和基准年分析是使用具有大样本量的数据收集模块完成的。该阶段包括通过各种来源和策略获取市场信息或相关数据。它包括提前检查和规划从过去获得的所有数据。它同样包括检查不同信息源中出现的信息不一致。使用市场统计和连贯模型分析和估计市场数据。此外,市场份额分析和关键趋势分析是市场报告中的主要成功因素。要了解更多信息,请请求分析师致电或下拉您的询问。
DBMR 研究团队使用的关键研究方法是数据三角测量,其中包括数据挖掘、数据变量对市场影响的分析和主要(行业专家)验证。数据模型包括供应商定位网格、市场时间线分析、市场概览和指南、公司定位网格、专利分析、定价分析、公司市场份额分析、测量标准、全球与区域和供应商份额分析。要了解有关研究方法的更多信息,请向我们的行业专家咨询。
可定制
Data Bridge Market Research 是高级形成性研究领域的领导者。我们为向现有和新客户提供符合其目标的数据和分析而感到自豪。报告可定制,包括目标品牌的价格趋势分析、了解其他国家的市场(索取国家列表)、临床试验结果数据、文献综述、翻新市场和产品基础分析。目标竞争对手的市场分析可以从基于技术的分析到市场组合策略进行分析。我们可以按照您所需的格式和数据样式添加您需要的任意数量的竞争对手数据。我们的分析师团队还可以为您提供原始 Excel 文件数据透视表(事实手册)中的数据,或者可以帮助您根据报告中的数据集创建演示文稿。

