Global Multimodal Ai Market
市场规模(十亿美元)
CAGR :
%
USD
1.65 Billion
USD
18.93 Billion
2024
2032
| 2025 –2032 | |
| USD 1.65 Billion | |
| USD 18.93 Billion | |
|
|
|
|
全球多模態人工智慧市場區隔、產品(解決方案、服務)、資料模態(影像資料、文字資料、語音資料)、技術(機器學習 (ML)、NLP、電腦視覺、情境感知、物聯網)、類型(生成式、翻譯式、解釋式、互動式)—產業趨勢與預測(至 2032 年)
多模式人工智慧市場規模
- 2024 年全球多模式人工智慧市場價值為16.5 億美元,預計到 2032 年將達到 183.3 億美元
- 在 2025 年至 2032 年的預測期內,市場可能以11.10% 的複合年增長率成長,主要受高度研究優化和新興產業的成長推動
- 這種增長是由諸如操作和維護先進光譜設備等因素推動的,這進一步增加了總體成本和複雜性,阻礙了其廣泛採用,特別是在新興市場
多模態人工智慧市場分析
- 多模態人工智慧是指能夠處理和理解來自多種資料模態(例如圖像、音訊、文字和感測器資料)的訊息,從而提供更全面、更豐富的情境洞察的人工智慧系統。它涵蓋了一系列用於分析和合成不同資料類型資訊的技術。
- 多模態人工智慧解決方案的需求很大程度上源於其在人機互動、自動駕駛汽車、醫療診斷和內容創作等領域的關鍵作用。這些領域需要先進的人工智慧能力來理解和應對涉及多種數據形式的複雜現實場景。
- 隨著各行各業專注於打造更直觀、更智慧的系統、提高自動化水平並增強用戶體驗,市場預計將持續成長,為更精準、更細緻地理解數據提供解決方案。這將推動機器人技術、個人化醫療和媒體製作等各領域的進步。
- 北美在多模式人工智慧市場中脫穎而出,成為主導地區,這得益於其強大的技術創新、廣泛的研發計劃以及各行各業對人工智慧解決方案的快速採用
報告範圍和多模式人工智慧市場細分
|
屬性 |
多模式人工智慧市場關鍵市場洞察 |
|
涵蓋的領域 |
|
|
覆蓋國家 |
美國、加拿大、墨西哥、德國、英國、法國、義大利、西班牙、俄羅斯、土耳其、荷蘭、挪威、芬蘭、丹麥、瑞典、波蘭、瑞士、比利時、歐洲其他地區、中國、日本、印度、韓國、澳洲、印尼、泰國、馬來西亞、新加坡、菲律賓、亞太其他地區、巴西、阿根廷、南美洲其他地區、阿聯酋、沙烏地阿拉伯、南非、埃及、以色列、以及中東和非洲其他地區 |
|
主要市場參與者 |
|
|
市場機會 |
|
|
加值資料資訊集 |
除了市場價值、成長率、市場細分、地理覆蓋範圍、市場參與者和市場情景等市場洞察之外,Data Bridge 市場研究團隊策劃的市場報告還包括深入的專家分析、進出口分析、定價分析、生產消費分析、PORTER 分析和 PESTLE 分析。 |
多模態人工智慧市場趨勢
“先進醫療診斷和個人化醫療的普及率不斷提高”
- 全球眼科手術顯微鏡市場的一個突出趨勢是先進醫療診斷和個人化醫療的日益普及
- 多模式人工智慧可以實現疾病的早期發現、預測患者結果並優化藥物輸送,從而帶來更有效、更個人化的醫療保健解決方案
- 例如,2024年3月,微軟宣布與一家領先的醫學研究機構合作,開發用於分析醫學影像和基因數據的多模態人工智慧模型,以預測癌症風險並制定個人化治療方案。該計畫旨在整合MRI掃描、CT掃描和基因組定序的數據,以識別模式並預測患者對特定療法的反應。未來的發展包括整合患者電子健康記錄和即時感測器數據。多模態人工智慧在醫療診斷的應用將擴大市場。
- 隨著精準醫療和改善醫療保健結果的需求不斷增長,投資開發醫療保健專用多模式人工智慧應用的公司將佔據相當大的市場份額
多模態人工智慧市場動態
司機
“提高多模式資料和運算資源的可用性和可負擔性”
- 影像、視訊、音訊和文字等各種形式的數位資料呈指數級增長,加上雲端運算和 GPU 等專用硬體成本的下降,正在推動多模態人工智慧的發展和部署
- 更輕鬆地存取海量資料集和強大的運算基礎設施使研究人員和開發人員能夠訓練和部署複雜的多模態人工智慧模型,從而加速創新並擴展應用
例如,
- 2024年4月,亞馬遜網路服務 (AWS) 宣布大幅降低其基於 GPU 的雲端運算執行個體價格,使開發者能夠以更實惠的價格訓練大型多模態人工智慧模型。這項措施預計將使強大運算資源的取得更加民主化,使小型企業和研究機構能夠參與多模態人工智慧革命。高性價比雲端運算的普及是市場發展的驅動力。
- 隨著資料產生和運算能力的不斷提升,多模態人工智慧的採用將進一步加速,從而推動各行各業開發出更複雜、更實用的應用。
機會
“個性化和情境感知的多模態人工智慧助手的開發”
- 情境感知多模態人工智慧助理系統旨在創建高度直觀和自適應的數位助理,能夠理解並透過多種模態(例如語音、手勢和視覺提示)響應用戶
- 透過利用多模式數據,這些助理可以提供更個人化和情境相關的交互,從而增強智慧家庭、客戶服務和無障礙等領域的使用者體驗
例如,
- 2024年2月,Google在其「Bard」助理中引入了先進的多模態功能,允許用戶透過語音命令、圖像和文字查詢進行互動。這項技術使Bard能夠理解並回應涉及多種資料類型的複雜請求,例如識別圖像中的物件並根據使用者語音提供上下文資訊。未來的增強功能包括與智慧家庭設備的整合以及基於用戶行為的個人化推薦。將多模態人工智慧與個人助理結合,為更廣泛的市場帶來了巨大的機會。
- 2024年1月,Salesforce宣布將多模態AI整合到其客戶服務平台,使客服人員能夠分析語音、文字和視訊等各種管道的客戶互動。根據Salesforce部落格報導,此次整合能夠更全面地了解客戶的需求和偏好,從而提高客戶滿意度並縮短問題解決時間。客戶服務應用中多模態AI的推動將推動市場發展。
- 隨著對無縫自然的人機互動的需求不斷增長,投資開發複雜的多模式人工智慧助理的公司將在提供下一代用戶介面方面獲得競爭優勢
克制/挑戰
“多模式資料整合和模型開發的複雜性”
- 由於資料格式、規模和語義表示的差異,整合和調整圖像、音訊和文字等不同模態的資料帶來了巨大的技術挑戰
- 開發能夠跨多種模式有效學習和推理的人工智慧模型需要複雜的架構和訓練技術,通常需要大量的運算資源和專業知識
- 多模態人工智慧缺乏標準化資料集和評估指標,進一步增加了模型開發和基準測試的複雜性,阻礙了其進步和廣泛應用。
例如,
- 2024年5月,人工智慧促進協會(AAAI)發布的一份報告強調了整合不同模態數據所面臨的挑戰,尤其是在自動駕駛等即時應用中。報告指出,感測器融合和資料同步的複雜性常常導致延遲和準確性問題,阻礙了穩健的多模態人工智慧系統的開發。這種複雜性嚴重限制了市場的發展。
- 2024年4月,《機器學習研究期刊》發表的一項研究探討了由於缺乏標準化基準和評估指標,評估多模態人工智慧模型效能的難度。研究強調,需要更全面的評估框架來評估模型在多模態下的推理和泛化能力。標準化的缺乏限制了市場的發展。
- 多模態人工智慧面臨整合複雜多元資料並開發有效模型的挑戰。這需要克服資料格式和意義的不一致,以及大量的運算資源和專業知識,才能充分發揮其潛力。
多模態人工智慧市場範圍
根據產品、資料模式、技術和類型,市場分為四個顯著的部分。
|
分割 |
細分 |
|
透過提供 |
|
|
依資料形態 |
|
|
依技術 |
|
|
按類型 |
|
多模式人工智慧市場國家分析
“北美是全球多模式人工智慧市場的主導地區”
- 北美在全球多模式人工智慧市場佔據主導地位,這得益於其領先的科技公司、對人工智慧研發的大量投資以及各行各業對先進人工智慧解決方案的早期採用
- 該地區人工智慧相關的專利申請和學術出版物比例很高,顯示創新環境成熟且具有競爭力。
- 熟練的人工智慧專業人員和資料科學家的支持使得多模式系統的快速開發和實施成為可能。
亞太地區預計將實現最高成長率”
- 預計亞太地區將在全球多模式人工智慧市場中實現最高成長率,這得益於快速擴張的數位經濟、政府對人工智慧計畫的投資不斷增加以及人工智慧在電子商務、製造業和智慧城市等領域的日益普及
- 由於處理多種數據類型的人工智慧技術的日益普及、多模式數據融合技術的進步以及各行各業人工智慧計畫的不斷增加,中國、印度和日本等國家正在成為全球多模式人工智慧市場的關鍵市場
- 日本憑藉其先進的技術基礎設施和對創新的重視,仍然是高端多模態人工智慧應用的關鍵市場。該國在高端人工智慧系統的採用方面繼續保持領先地位,這些系統能夠整合和分析各種數據流,從而提高複雜決策過程的精準度和效率。
多模式人工智慧市場份額
市場競爭格局按競爭對手提供詳細資料。詳細資訊包括公司概況、公司財務狀況、收入、市場潛力、研發投入、新市場計劃、全球影響力、生產基地和設施、生產能力、公司優勢和劣勢、產品發布、產品寬度和廣度以及應用主導地位。以上提供的數據點僅與公司在市場中的重點相關。
市場中主要的市場領導者有:
- 谷歌有限責任公司(美國)
- 微軟公司(美國)
- 亞馬遜網路服務公司(AWS)(美國)
- Meta Platforms, Inc.(美國)
- IBM公司(美國)
- OpenAI, LLC(美國)
- NVIDIA公司(美國)
- 百度公司(中國)
- 騰訊控股有限公司(中國)
- 阿里巴巴集團控股有限公司 (中國)
- Salesforce, Inc.(美國)
- Uniphore Technologies Inc.(美國)
- Adobe Inc.(美國)
- 高通科技公司(美國)
- 三星電子有限公司(韓國)
- 華為技術有限公司 (中國)
- DeepMind (Alphabet Inc.)(英國)
- 商湯科技集團(中國)
- Scale AI, Inc.(美國)
- DataRobot, Inc.(美國)
多模態人工智慧市場的最新發展
- 2024年2月,Meta Platforms公佈了其多模態人工智慧研究的重大進展,特別專注於整合視覺和文字資料以增強社群媒體體驗。該公司展示了能夠透過分析圖片和文字產生高度情境化的用戶貼文回應的人工智慧系統。這項進展旨在提升Instagram和Facebook等平台上的內容理解和用戶參與度,從而可能帶來更具互動性和個人化的社群媒體互動。 Meta致力於利用多模態人工智慧豐富社群媒體,彰顯了情境理解在線上交流中日益增長的重要性。
- 2024年3月,NVIDIA發布了一套全面的軟體開發工具包(SDK),旨在加速機器人和自主系統多模態AI應用的開發。該SDK為開發者提供了整合和處理來自各種感測器(包括攝影機、雷射雷達和雷達)資料的工具和庫,使機器人能夠更有效地感知環境並與之互動。該工具包強調即時數據融合和AI驅動的決策,旨在簡化用於工業自動化和自動駕駛汽車的先進機器人系統的開發。這項進展標誌著NVIDIA正大力推動多模態AI在現實世界機器人應用中的普及。
- 2024年4月,Adobe公司宣布將先進的多模態AI功能整合到其創意軟體套件中,使用戶能夠使用自然語言提示和多模態資料輸入來產生和處理影像和影片。這項發展利用AI簡化了創意工作流程,使設計師和藝術家能夠更輕鬆、更有效率地產生複雜的視覺內容。 Adobe專注於將多模態AI整合到其創意工具中,凸顯了利用AI來增強人類創造力和提升數位內容創作能力的日益增長的趨勢。
SKU-
Get online access to the report on the World's First Market Intelligence Cloud
- Interactive Data Analysis Dashboard
- Company Analysis Dashboard for high growth potential opportunities
- Research Analyst Access for customization & queries
- Competitor Analysis with Interactive dashboard
- Latest News, Updates & Trend analysis
- Harness the Power of Benchmark Analysis for Comprehensive Competitor Tracking
研究方法
数据收集和基准年分析是使用具有大样本量的数据收集模块完成的。该阶段包括通过各种来源和策略获取市场信息或相关数据。它包括提前检查和规划从过去获得的所有数据。它同样包括检查不同信息源中出现的信息不一致。使用市场统计和连贯模型分析和估计市场数据。此外,市场份额分析和关键趋势分析是市场报告中的主要成功因素。要了解更多信息,请请求分析师致电或下拉您的询问。
DBMR 研究团队使用的关键研究方法是数据三角测量,其中包括数据挖掘、数据变量对市场影响的分析和主要(行业专家)验证。数据模型包括供应商定位网格、市场时间线分析、市场概览和指南、公司定位网格、专利分析、定价分析、公司市场份额分析、测量标准、全球与区域和供应商份额分析。要了解有关研究方法的更多信息,请向我们的行业专家咨询。
可定制
Data Bridge Market Research 是高级形成性研究领域的领导者。我们为向现有和新客户提供符合其目标的数据和分析而感到自豪。报告可定制,包括目标品牌的价格趋势分析、了解其他国家的市场(索取国家列表)、临床试验结果数据、文献综述、翻新市场和产品基础分析。目标竞争对手的市场分析可以从基于技术的分析到市场组合策略进行分析。我们可以按照您所需的格式和数据样式添加您需要的任意数量的竞争对手数据。我们的分析师团队还可以为您提供原始 Excel 文件数据透视表(事实手册)中的数据,或者可以帮助您根据报告中的数据集创建演示文稿。

