Global Predictive Analytics For Hospital Readmissions Market
市场规模(十亿美元)
CAGR :
%
USD
1.18 Billion
USD
3.19 Billion
2024
2032
| 2025 –2032 | |
| USD 1.18 Billion | |
| USD 3.19 Billion | |
|
|
|
|
全球醫院再入院預測分析市場細分,按類型(再入院風險評估工具、臨床決策支援系統、病患監測解決方案、人口健康管理解決方案等)、通訊協定(基於雲端、本地、基於 Web、混合等)、工作(機器學習演算法、回歸模型、支援向量機 (SVM)、神經網路等)、應用(醫院、診所、長期護理中心、回歸模型、支援向量機 (SVM)、神經網路等)、應用(醫院、診所、長期護理中心、回歸模型、支援向量機 (SVM)、神經網路等)、應用(醫院、診所、長期照護中心、回歸模型、支援向量機 (SVM)、神經網路等)、應用(醫院、診所、長期照護中心、回歸模型、支援向量機 (SVM)、神經網路等)、應用(醫院、診所、長期照護中心、回歸模型、支援向量機 (SVM)、神經網路等)、應用(醫院、診所、長期照護中心、回歸模型、支援向量機 (SVM)、神經網路等)、應用(醫院、診所、長期照護中心、回歸模型、支援向量機 (SVM)、神經網路等)、應用(醫院、診所、長期照護中心、回歸模型、支援向量機 (SVM)、神經網路等)、應用(醫院、診所、長期照護中心、回歸模式
醫院再入院市場規模的預測分析
- 2024 年全球醫院再入院預測分析市場規模為11.8 億美元 ,預計 到 2032 年將達到 31.9 億美元,預測期內 複合年增長率為 13.30%。
- 市場成長主要得益於醫療 IT 和數據分析領域日益普及和技術進步,從而推動了醫院系統和臨床環境的數位化程度提高
- 此外,醫療成本的上漲以及減少可避免再入院的需求,使得預測分析成為醫院再入院管理的關鍵解決方案。這些因素共同加速了醫院再入院預測分析解決方案的普及,從而顯著推動了該行業的成長。
醫院再入院市場分析的預測分析
- 利用人工智慧(AI) 和機器學習演算法的預測分析工具,透過識別高風險患者並及時幹預,在降低醫院再入院率方面變得越來越重要。這些技術正在整合到電子健康記錄 (EHR) 和護理管理平台中,以支援臨床和營運決策。
- 醫療保健領域對預測分析的需求不斷增長,主要是由於慢性病負擔加重、醫療保健成本不斷上漲,以及全球對基於價值的護理模式的重視,這種模式會懲罰不必要的再入院
- 北美在醫院再入院預測分析市場佔據主導地位,2024 年其收入份額最高,達到 42.7%,這得益於先進的醫療基礎設施、醫療 IT 系統的廣泛應用以及對高品質結果的有力監管支持。尤其值得一提的是,受醫療保險和醫療補助服務中心 (CMS) 再入院處罰以及民眾健康管理日益受到重視的推動,美國醫院和責任醫療組織 (ACO) 的預測分析平台部署量大幅增長。
- 預計亞太地區將成為預測期內醫院再入院預測分析市場成長最快的地區,預計 2025 年至 2032 年的複合年增長率將達到 19.3%。推動這一成長的因素包括醫療數位化投資的增加、醫院網路的擴大,以及中國和印度等人口稠密國家對高效資源利用的需求日益增長。
- 雲端運算技術憑藉其靈活性、遠端存取以及與醫院系統的無縫整合等優勢,在2024年佔據了醫院再入院預測分析市場的61.8%的份額。醫療保健領域日益向雲端基礎設施轉型,這實現了即時數據分析、經濟高效的可擴展性以及電子健康記錄 (EHR) 和預測平台之間增強的互通性,從而推動了雲端解決方案的廣泛採用。
醫院再入院市場細分的報告範圍和預測分析
|
屬性 |
醫院再入院預測分析關鍵市場洞察 |
|
涵蓋的領域 |
|
|
覆蓋國家 |
北美洲
歐洲
亞太
中東和非洲
南美洲
|
|
主要市場參與者 |
|
|
市場機會 |
|
|
加值資料資訊集 |
除了對市場價值、成長率、細分、地理覆蓋範圍和主要參與者等市場情景的洞察之外,Data Bridge Market Research 策劃的市場報告還包括深入的專家分析、定價分析、品牌份額分析、消費者調查、人口統計分析、供應鏈分析、價值鏈分析、原材料/消耗品概述、供應商選擇標準、PESTLE 分析、波特分析和監管框架。 |
醫院再入院市場趨勢預測分析
“由於技術進步和工作流程自動化而加速採用”
- 全球醫院再入院預測分析市場的一個重要且加速發展的趨勢是,先進技術日益融入臨床決策和護理管理系統。這些增強功能正在顯著提高整個醫療機構的效率、準確性和操作便利性。
- 例如,IBM Watson Health 和 SAS Health Analytics 開發的解決方案正在整合到醫院 IT 生態系統中,提供預測性洞察,幫助醫療服務提供者更準確、更及時地識別高風險患者。這些工具支援主動護理規劃和資源最佳化,以減少不必要的再入院。
- 醫院工作流程中嵌入的預測模型可以從歷史健康記錄和病患行為模式中學習,從而提供客製化的建議和警報,指導及時介入。這種智慧水準有助於改善患者治療效果,並降低醫療機構的營運成本。
- 分析平台與電子健康記錄 (EHR)、遠距醫療解決方案和遠端監控系統的整合,正在建立一個無縫的資料交換環境。透過集中式儀錶板,醫療專業人員可以有效率地管理風險評估、護理協調和出院後追蹤計畫。
- 這種向更直觀、可互通且可擴展的預測系統發展的趨勢正在改變醫院的再入院策略。因此,Epic Systems 和 Cerner 等公司正在增強其分析產品,以滿足醫院對可操作洞察和以患者為中心的解決方案的需求。
- 醫療工具的需求日益增長,這些工具能夠提升臨床效率並降低再入院率,這加速了醫院、長期照護機構和家庭醫療保健機構對預測分析解決方案的採用。醫療保健利害關係人越來越重視此類創新,以符合政策要求和基於價值的照護模式。
醫院再入院市場動態的預測分析
司機
“由於再入院率上升和對基於價值的護理的需求不斷增長”
- 醫院再入院的經濟和臨床負擔不斷增加,尤其是對於患有慢性疾病的患者而言,這促使醫療保健提供者和付款人尋求預測分析工具,以便早期識別風險並進行主動幹預
- 例如,2024 年 4 月,Onity 公司(霍尼韋爾國際公司)宣佈在醫療物聯網解決方案方面取得進展,旨在改善住院患者監測系統,這反映了整個行業正在推動將預測分析整合到臨床工作流程中
- 隨著醫療保健系統轉向基於價值的報銷模式,減少可避免的再入院已成為關鍵的績效指標。預測分析解決方案基於患者的歷史和即時數據(例如人口統計、共病、服藥依從性和出院後行為)提供洞察,從而識別高風險患者。
- 此外,電子健康記錄 (EHR)、穿戴式健康技術和遠端患者監控工具的日益融合,提高了可用於預測模型的數據的品質和廣度,推動了市場採用
- 醫療保健提供者越來越多地採用預測分析來改善出院計劃、個性化後續護理並更有效地分配資源,從而改善患者的治療效果並減少醫院再入院減少計劃 (HRRP) 等計劃下的處罰
克制/挑戰
“資料隱私、整合複雜性和高實施成本”
- 對資料隱私和安全的擔憂,對醫院環境中預測分析的應用構成了重大挑戰。處理敏感的病患資料需要遵守嚴格的法規,例如美國的《健康保險流通與責任法》(HIPAA)和歐洲的《一般資料保護規範》(GDPR),因此強大的加密和存取控制機制至關重要。
- 此外,由於醫療IT系統碎片化,許多醫院面臨互通性問題。將預測分析平台與各種EHR系統和臨床工作流程整合起來可能既耗時又耗資,尤其對於資金不足或偏遠地區的醫療機構。
- 雖然基於雲端的分析工具正在成為更具可擴展性的替代方案,但初始設置成本(包括培訓、基礎設施升級和供應商訂閱)仍然是小型醫院的障礙
- 為了獲得更廣泛的認可,供應商必須專注於提供可互通、經濟高效且易於實施的解決方案,同時確保透明的資料治理和合規性支援。政府資助和公私合作夥伴關係也可以在減輕採用的財務負擔方面發揮關鍵作用。
醫院再入院預測分析市場範圍
醫院再入院預測分析市場根據組件類型、交付模式、最終用戶和應用分為四個顯著的類別。
• 依組件類型
根據組件類型,醫院再入院預測分析市場可細分為軟體、服務和硬體。 2024年,軟體領域佔據了最大的市場收入份額,達到45.3%,這得益於用於監測患者健康狀況和預測再入院情況的高級數據分析工具需求的不斷增長。
由於對培訓、諮詢和整合服務的需求不斷增長,預計服務業將在 2025 年至 2032 年期間實現最快的 22.6% 複合年增長率。
• 依交付方式
根據交付模式,醫院再入院預測分析市場細分為基於雲端的解決方案和本地解決方案。由於靈活性、遠端存取以及易於與醫院系統整合等優勢,基於雲端的解決方案在2024年佔據了最大的收入份額,達到61.8%。
預計在預測期內,內部部署部分將見證最快的成長率,受到關注資料控制和法規遵循的大型機構的青睞。
• 按最終用戶
根據最終用戶,醫院再入院預測分析市場細分為醫院、診所、門診手術中心和其他。由於患者數量眾多、再入院處罰更嚴格以及預測技術預算更充足,醫院細分市場在2024年佔據了58.6%的最大收入份額。
隨著門診手術中心越來越多地採用技術支援的患者隨訪,預計 2025 年至 2032 年間,門診手術中心部門的複合年增長率將達到 23.1%,為最快的增長點。
• 按應用
根據應用,醫院再入院預測分析市場細分為慢性病管理、手術復健追蹤、心理健康再入院預防、老年照護監測等。慢性病管理領域佔據主導地位,2024 年市佔率為 39.5%,這主要得益於對心臟病、糖尿病和慢性阻塞性肺病 (COPD) 相關再入院管理的需求。
預計手術恢復追蹤部分將在預測期內見證最快的成長率,因為術後併發症仍然是意外再入院的主要原因。
醫院再入院市場區域分析的預測分析
- 北美在醫院再入院預測分析市場佔據主導地位,2024 年的收入份額最高,為 42.7%,這得益於對人工智慧風險評估工具的需求不斷增長、降低醫療成本的壓力日益增大以及政府對數位醫療解決方案的大力支持
- 預測工具與電子健康記錄 (EHR) 和基於價值的護理計劃的廣泛整合,進一步推動了該地區市場的成長
- 區域市場受益於成熟的醫療 IT 基礎設施、強大的報銷框架以及積極主動的醫療保健提供者,這些提供者致力於透過早期介入策略減少可避免的醫院再入院率
美國醫院再入院預測分析市場洞察
2024年,美國醫院再入院預測分析市場佔據了北美地區最大的收入份額,達83%。這一主導地位歸功於美國醫療保險和醫療補助服務中心(CMS)對再入院率過高的醫院進行處罰的舉措,這刺激了預測分析平台的廣泛應用。 Epic Systems、IBM Watson Health和Cerner等領先企業正在大力投資人工智慧和機器學習工具,旨在改善患者治療效果並降低成本。
歐洲醫院再入院預測分析市場洞察
預計歐洲醫院再入院預測分析市場將在整個預測期內以顯著的複合年增長率擴張,這得益於更嚴格的醫院績效監管以及國家醫療服務體系對成本控制日益增長的需求。德國、法國和英國等國家正在投資數位化醫療轉型,其中包括利用預測分析來改善臨床決策並縮短住院時間。歐盟範圍內的互通性措施和合作研究計畫也促進了市場的發展。
英國醫院再入院預測分析市場洞察
預計英國醫院再入院預測分析市場在預測期內將實現顯著的複合年增長率。英國國家醫療服務體系(NHS)長期計畫等政府主導的措施強調預測模型和風險分層工具,以主動管理慢性病並降低再入院率。即時病患資料和雲端分析平台的日益普及,正在支援公立和私立醫院更快地採用該技術。
德國醫院再入院預測分析市場洞察
預計在預測期內,德國醫院再入院預測分析市場將以可觀的複合年增長率擴張,這主要得益於對醫療數位化、人口老化以及主動慢性病管理需求的高度重視。當地公司正在與技術提供者合作,利用真實世界證據 (RWE) 開發預測模型,以提高風險預測的準確性,並提升學術醫療中心和地區醫院的市場滲透率。
亞太地區醫院再入院率預測分析市場洞察
預計亞太地區醫院再入院預測分析市場在2025年至2032年間將實現最快的複合年增長率,達到19.3%,這得益於中國、印度、日本和韓國等國家醫療基礎設施投資的不斷增加、疾病負擔的不斷加重以及數字化轉型舉措。該地區對遠端監控、人工智慧分診以及利用預測分析來減少醫院再入院次數的行動醫療應用程式的興趣日益濃厚。
日本醫院再入院預測分析市場洞察
由於人口老化加劇、醫療成本上漲以及政府大力推動人工智慧在臨床環境中的整合,日本醫院再入院預測分析市場正獲得顯著發展。預計該市場的複合年增長率為 21.8%,日本正在利用先進的預測平台來優化出院計劃和長期照護策略。醫院與科技公司之間的合作正在進一步提升市場成熟度。
中國醫院再入院率預測分析市場洞察
2024年,中國醫院再入院預測分析市場佔亞太市場最大份額,達41.3%。這一領先地位得益於國家數位醫療計劃、對智慧醫院基礎設施的投資以及強大的本地科技創新者生態系統。預測分析廣泛應用於三級醫院,用於管理高風險患者,尤其是在心臟科、腫瘤科和術後護理領域。政府支持的計畫正在推動人工智慧的整合,以管理農村醫療差距並簡化再入院工作流程。
醫院再入院市佔率預測分析
醫院再入院產業的預測分析主要由知名公司主導,包括:
- IBM公司(美國)
- SAS Institute Inc.(美國)
- Optum, Inc.(美國)
- Cerner公司(美國)
- Epic Systems Corporation(美國)
- Allscripts Healthcare Solutions, Inc.(美國)
- Health Catalyst(美國)
- 甲骨文公司(美國)
- Veradigm(美國)
- 改變醫療保健(美國)
- 3M(美國)
- MedeAnalytics, Inc.(美國)
- Inovalon Holdings, Inc.(美國)
- Cognizant Technology Solutions(美國)
- 飛利浦醫療保健(荷蘭)
全球醫院再入院預測分析市場的最新發展
- 2025年4月,美國國立衛生研究院 (NIH) 資助了一項臨床研究,該研究引入了一種基於人工智慧的篩檢工具,旨在降低與阿片類藥物使用障礙相關的醫院再入院率。該工具將30天再入院率降低了47%,並在研究期間節省了超過10萬美元的醫院費用。這驗證了預測分析在改善護理過渡和精準定位高風險患者方面的潛力。
- 2025年3月,西奈山醫療系統實施了即時預測模型,該模型與患者電子健康記錄相集成,以主動管理出院後護理。此舉將再入院率降低了10%,並透過數據驅動的洞察,實現了更好的護理協調和病患監測。
- 2025年2月,加州一家安全網醫院利用預測性人工智慧和自動化護理工作流程,將再入院率從27.9%降至23.9%,同時消除了出院品質方面的種族差異。該計畫保留了720萬美元的績效資金,並被譽為弱勢群體可複製的模式。
- 2025年4月,加拿大坎貝爾福德紀念醫院啟動了「智慧出院」項目,利用基於雲端的預測分析技術識別農村高風險患者,以便進行出院後居家追蹤。該計畫旨在減少可避免的再入院率,並提高偏遠社區的醫療可近性。
- 2025年1月,醫療AI公司Jvion擴大了與多家美國醫院的合作,部署了其基於機器學習的「臨床AI再入院風險」平台。該解決方案分析了超過4500個變量,以預測再入院率並建議有針對性的干預措施,從而顯著增強了營運和臨床決策能力。
SKU-
Get online access to the report on the World's First Market Intelligence Cloud
- Interactive Data Analysis Dashboard
- Company Analysis Dashboard for high growth potential opportunities
- Research Analyst Access for customization & queries
- Competitor Analysis with Interactive dashboard
- Latest News, Updates & Trend analysis
- Harness the Power of Benchmark Analysis for Comprehensive Competitor Tracking
研究方法
数据收集和基准年分析是使用具有大样本量的数据收集模块完成的。该阶段包括通过各种来源和策略获取市场信息或相关数据。它包括提前检查和规划从过去获得的所有数据。它同样包括检查不同信息源中出现的信息不一致。使用市场统计和连贯模型分析和估计市场数据。此外,市场份额分析和关键趋势分析是市场报告中的主要成功因素。要了解更多信息,请请求分析师致电或下拉您的询问。
DBMR 研究团队使用的关键研究方法是数据三角测量,其中包括数据挖掘、数据变量对市场影响的分析和主要(行业专家)验证。数据模型包括供应商定位网格、市场时间线分析、市场概览和指南、公司定位网格、专利分析、定价分析、公司市场份额分析、测量标准、全球与区域和供应商份额分析。要了解有关研究方法的更多信息,请向我们的行业专家咨询。
可定制
Data Bridge Market Research 是高级形成性研究领域的领导者。我们为向现有和新客户提供符合其目标的数据和分析而感到自豪。报告可定制,包括目标品牌的价格趋势分析、了解其他国家的市场(索取国家列表)、临床试验结果数据、文献综述、翻新市场和产品基础分析。目标竞争对手的市场分析可以从基于技术的分析到市场组合策略进行分析。我们可以按照您所需的格式和数据样式添加您需要的任意数量的竞争对手数据。我们的分析师团队还可以为您提供原始 Excel 文件数据透视表(事实手册)中的数据,或者可以帮助您根据报告中的数据集创建演示文稿。

