Global Predictive Maintenance Market
市场规模(十亿美元)
CAGR :
%

![]() |
2025 –2032 |
![]() |
USD 8.89 Billion |
![]() |
USD 83.45 Billion |
![]() |
|
![]() |
|
全球預測性維護市場細分,按組件(解決方案和服務)、部署模式(雲端和本地)、組織規模(大型企業和中小型企業)、垂直行業(製造、能源和公用事業、交通運輸、政府、醫療保健、航空航天和國防等)、利益相關者(MRO、OEM/ODM 和技術集成商) - 行業趨勢和預測到 2032 年
預測性維護市場規模
- 2024 年全球預測性維護市場規模為88.9 億美元 ,預計到 2032 年將達到 834.5 億美元,預測期內 複合年增長率為 32.30%。
- 這一增長是由大數據、機器對機器 (M2M) 通訊和人工智慧 (AI) 的持續進步所推動的
預測性維護市場分析
- 預測性維護是必不可少的便攜式儲能設備,由於其便捷的充電功能、緊湊的設計以及同時支援多個設備的能力,廣泛應用於消費性電子、汽車、醫療設備、工業應用和旅行配件等各個領域
- 預測性維護的需求很大程度上受到智慧型手機 普及率的提高、數位依賴性的增加以及忙碌的消費者和專業人士對備用電源解決方案的需求不斷增長的推動
- 預計北美將主導預測性維護市場,佔據 35.71% 的最大市場份額,這得益於強大的工業數位化以及物聯網、人工智慧和機器學習等先進技術的早期採用
- 受快速工業化、智慧製造投資不斷增長以及「印度製造」和「中國製造 2025」等政府主導的舉措的推動,亞太地區預計將見證預測性維護市場的最高成長率。
- 預計該解決方案領域將在 2025 年佔據預測性維護市場的主導地位,佔據 81.11% 的最大份額,因為它能夠提供高級分析、即時監控和可操作的見解,幫助組織減少計劃外停機時間、降低維護成本並延長設備使用壽命
報告範圍和預測性維護市場細分
屬性 |
預測性維護關鍵市場洞察 |
涵蓋的領域 |
|
覆蓋國家 |
北美洲
歐洲
亞太
中東和非洲
南美洲
|
主要市場參與者 |
|
市場機會 |
|
加值資料資訊集 |
除了對市場價值、成長率、細分、地理覆蓋範圍和主要參與者等市場情景的洞察之外,Data Bridge Market Research 策劃的市場報告還包括進出口分析、生產能力概覽、生產消費分析、價格趨勢分析、氣候變遷情景、供應鏈分析、價值鏈分析、原材料/消耗品概覽、供應商選擇標準、PESTLE 分析、波特分析和監管框架。 |
預測性維護市場趨勢
“人工智慧與機器學習的整合用於狀態監測”
- 影響預測性維護市場的一個主要趨勢是人工智慧 (AI) 和機器學習 (ML) 演算法在即時狀態監測和故障預測方面的日益融合
- 這些技術可實現數據驅動的決策,減少非計劃性停機時間並優化製造、運輸和能源等行業的維護計劃
- 人工智慧分析平台有助於識別傳統方法經常忽略的機器行為中的細微異常
- 例如,2024 年 2 月,IBM 與 ABB 合作,將人工智慧驅動的預測分析整合到工業設備中,增強故障檢測和維護計劃
- 隨著人工智慧功能變得越來越普及,各行各業正在迅速採用預測性維護來提高營運效率並節省成本
預測性維護市場動態
司機
“工業物聯網部署激增”
- 工業物聯網 (IIoT) 設備的廣泛實施顯著加速了預測性維護解決方案的採用
- 工業物聯網感測器持續收集設備數據,例如溫度、振動和壓力,然後進行分析以發現故障的早期跡象
- 這提高了資產可靠性,並降低了石油天然氣、製造業和能源等領域的維護成本
- 例如,2023 年,西門子擴展了其 MindSphere IIoT 平台,為發電廠和汽車工廠使用的重型機械增加了新的預測性維護模組
- 工業物聯網基礎設施的普及預計將推動預測性維護市場的發展,尤其是在資產密集型產業
機會
“運輸和物流領域的應用”
- 預測性維護在運輸和物流行業中越來越受到關注,以提高車隊正常運行時間、減少故障並確保合規性
- 隨著物流公司專注於即時車輛監控和路線優化,預測分析在預防性維修中發揮關鍵作用
- 與遠端資訊處理系統的整合可以對車輛健康狀況提供切實可行的洞察,減少營運中斷
- 例如,2024 年 5 月,GE Transportation 推出了貨運機車的預測性維護解決方案,以預測零件故障並優化維修間隔
- 這一趨勢為預測性維護提供者帶來了豐厚的利潤,使他們能夠為全球車隊管理公司提供量身定制的解決方案
克制/挑戰
“初始投資高,數據整合複雜”
- 預測性維護市場的主要限制因素之一是實施先進監控系統的初始成本高昂,包括感測器安裝、軟體平台和技術人員
- 此外,將預測工具與 ERP 和 SCADA 等現有企業系統整合在技術上可能具有挑戰性,尤其是對於傳統基礎設施而言
- 中小企業往往難以證明投資報酬率的合理性,因為無法長期看到收益
- 例如,德勤 2023 年的一項調查顯示,38% 的製造業因整合障礙和成本效益分析不明確而推遲了預測性維護的採用
- 這些財務和技術障礙可能會限制採用,特別是在成本敏感的市場或中型企業
預測性維護市場範圍
市場根據組件、部署模式、組織規模、垂直度和利害關係人進行細分。
分割 |
細分 |
按組件 |
|
按部署模式 |
|
按組織規模 |
|
按垂直 |
|
按利害關係人 |
|
預計到 2025 年,該解決方案將佔據字體組件市場的最大份額
預計該解決方案部門將在 2025 年佔據預測性維護市場的主導地位,佔據 81.11% 的最大份額, 因為它能夠提供高級分析、即時監控和可操作的見解,幫助組織減少計劃外停機時間、降低維護成本並延長設備使用壽命。
預計在預測期內,本地電池將佔據電池 領域的最大份額
到 2025 年,由於本地部署領域資料安全性增強、對基礎設施的控制力更強,並且適合合規性要求嚴格或互聯網連接有限的組織,預計將佔據市場主導地位,市場份額達到 76.31%。
預測性維護市場區域分析
“北美佔據預測性維護市場最大份額”
- 預計北美將主導預測性維護市場,佔據 35.71% 的最大市場份額,這得益於強大的工業數位化以及物聯網、人工智慧和機器學習等先進技術的早期採用
- 製造業、航空航太和汽車等行業的主要解決方案提供者和強大的基礎設施的存在進一步鞏固了區域主導地位
- 監管機構對工作場所安全和營運效率的關注促使企業大力投資預測性維護平台
“預計亞太地區將在預測性維護市場中實現最高的複合年增長率”
- 預計亞太地區將見證預測性維護市場的最高成長率,這得益於快速工業化、智慧製造投資不斷增長以及「印度製造」和「中國製造 2025」等政府主導的舉措
- 製造設施的擴張以及能源、運輸和物流等行業對資產優化的需求不斷增長,正在加速預測性維護的採用
- 人們對成本節約效益和技術進步的認識不斷提高,正在鼓勵中國、印度和韓國等國家的大型企業和中小企業部署預測性維護解決方案
預測性維護市場份額
市場競爭格局提供了競爭對手的詳細資訊。詳細資訊包括公司概況、公司財務狀況、收入、市場潛力、研發投資、新市場計劃、全球影響力、生產基地和設施、生產能力、公司優勢和劣勢、產品發布、產品寬度和廣度、應用優勢。以上提供的數據點僅與公司對市場的關注有關。
市場中主要的市場領導者有:
- 微軟 (美國)
- IBM (美國)
- SAP (德國)
- SAS Institute Inc.(美國)
- 軟體有限公司(德國)
- 雲端軟體集團有限公司(美國)
- 惠普企業開發有限公司(美國)
- Altair Engineering Inc.(美國)
- Splunk LLC(美國)
- 甲骨文 (美國)
- Google(美國)
- 亞馬遜網路服務公司(美國)
- 通用電氣公司 (美國)
- 施耐德電機(法國)
- 日立有限公司(日本)
- PTC(美國)
- DINGO Software Pty. Ltd(澳洲)
全球預測性維護市場的最新發展
- 2024年9月,西門子與領先的科技公司默克建立策略夥伴關係,加速數位轉型,提升智慧製造實務;預計此次合作將顯著提高工業效率與創新
- 2024 年 6 月,IBM 公司推出了 Maximo 應用程式套件 (MAS) 9.0 版本,具有增強的 AI 驅動的預測性維護 (PdM) 介面和擴展的 IoT 整合以實現即時分析。預計此版本將改善各行業的使用者體驗和資產可靠性
- 2024 年 6 月,C3.ai, Inc. 在全球永續建築材料領導者 Holcim 實施了其 C3 AI 可靠性解決方案,以支援數位轉型和永續發展目標。此次部署旨在降低營運風險,並幫助公司實現淨零未來
- 2024 年 3 月,通用電氣 Vernova 宣布與沙烏地阿拉伯的 TASNEE 合作,提供關鍵設備監控的先進預測分析軟體。該解決方案旨在防止停機並提高石化營運的營運彈性
- 2024年1月,羅克韋爾自動化與MakinaRocks合作,將人工智慧驅動的預測性維護解決方案整合到工業自動化系統中;該計劃旨在最大限度地減少計劃外停機時間,並提高整個製造流程的生產效率
SKU-
Get online access to the report on the World's First Market Intelligence Cloud
- Interactive Data Analysis Dashboard
- Company Analysis Dashboard for high growth potential opportunities
- Research Analyst Access for customization & queries
- Competitor Analysis with Interactive dashboard
- Latest News, Updates & Trend analysis
- Harness the Power of Benchmark Analysis for Comprehensive Competitor Tracking
研究方法
数据收集和基准年分析是使用具有大样本量的数据收集模块完成的。该阶段包括通过各种来源和策略获取市场信息或相关数据。它包括提前检查和规划从过去获得的所有数据。它同样包括检查不同信息源中出现的信息不一致。使用市场统计和连贯模型分析和估计市场数据。此外,市场份额分析和关键趋势分析是市场报告中的主要成功因素。要了解更多信息,请请求分析师致电或下拉您的询问。
DBMR 研究团队使用的关键研究方法是数据三角测量,其中包括数据挖掘、数据变量对市场影响的分析和主要(行业专家)验证。数据模型包括供应商定位网格、市场时间线分析、市场概览和指南、公司定位网格、专利分析、定价分析、公司市场份额分析、测量标准、全球与区域和供应商份额分析。要了解有关研究方法的更多信息,请向我们的行业专家咨询。
可定制
Data Bridge Market Research 是高级形成性研究领域的领导者。我们为向现有和新客户提供符合其目标的数据和分析而感到自豪。报告可定制,包括目标品牌的价格趋势分析、了解其他国家的市场(索取国家列表)、临床试验结果数据、文献综述、翻新市场和产品基础分析。目标竞争对手的市场分析可以从基于技术的分析到市场组合策略进行分析。我们可以按照您所需的格式和数据样式添加您需要的任意数量的竞争对手数据。我们的分析师团队还可以为您提供原始 Excel 文件数据透视表(事实手册)中的数据,或者可以帮助您根据报告中的数据集创建演示文稿。