Global Retail Edge Computing Market
市场规模(十亿美元)
CAGR :
%
USD
2.15 Billion
USD
4.16 Billion
2024
2032
| 2025 –2032 | |
| USD 2.15 Billion | |
| USD 4.16 Billion | |
|
|
|
|
全球零售邊緣運算市場細分,按組件(硬體、網關、微型資料中心、平台、解決方案和服務)、技術(行動邊緣運算和霧運算)、應用(智慧城市、定位服務、分析、環境監測、最佳化本地內容、資料快取、擴增實境等)、組織規模(小型企業、中型企業和大型企業)、垂直產業(製造業、醫療保健和電信2032 年
零售邊緣運算市場規模
- 2024 年全球零售邊緣運算市場規模為21.5 億美元,預計到 2032 年將達到 41.6 億美元,預測期內 複合年增長率為 8.60%。
- 市場成長主要得益於零售環境中對即時數據處理日益增長的需求,從而實現更快的決策、減少延遲並提高營運效率
- 此外,物聯網設備、人工智慧分析和互聯基礎設施在實體零售空間的快速部署,正在加速邊緣運算的普及。這些進步使零售商能夠提供個人化的客戶體驗、優化庫存並支援自動化,從而顯著推動市場成長。
零售邊緣運算市場分析
- 零售邊緣運算是指將運算資源部署到更靠近最終用戶的位置,例如零售店、倉庫和配送中心,以便對 POS 系統、攝影機、感測器和連接設備產生的資料進行本地化處理
- 零售業對低延遲洞察、無縫全通路整合和增強資料安全性的需求推動了邊緣運算的日益普及。透過在邊緣而非集中式雲端處理數據,零售商可以提高反應速度、降低頻寬成本,並在其整個營運過程中提供更有效率、更客製化的服務。
- 由於對即時數據處理和強大基礎設施的需求不斷增長,以支持零售業的數位轉型,北美在 2024 年佔據零售邊緣運算市場的主導地位,市場份額為46.30%
- 由於城市化進程加快、可支配收入增加以及主要經濟體技術的快速進步,預計亞太地區將成為預測期內零售邊緣運算市場成長最快的地區
- 由於實體零售場所越來越多地採用感測器、路由器和邊緣伺服器來支援即時資料處理,硬體領域在2024年佔據了52%的市場份額,佔據了主導地位。零售商正在部署先進的硬體來支援監控、庫存追蹤、智慧貨架和客戶分析,而無需過度依賴雲端基礎設施。這種轉變確保了更低的延遲、更高的營運速度和在地化決策,尤其是在大型門市。邊緣硬體的可擴展性和可靠性使其成為數位優先零售策略不可或缺的一部分。零售商也利用邊緣設備整合非接觸式結帳和店內導航功能。
報告範圍和零售邊緣運算市場細分
|
屬性 |
零售邊緣運算關鍵市場洞察 |
|
涵蓋的領域 |
|
|
覆蓋國家 |
北美洲
歐洲
亞太
中東和非洲
南美洲
|
|
主要市場參與者 |
|
|
市場機會 |
|
|
加值資料資訊集 |
除了對市場價值、成長率、細分、地理覆蓋範圍和主要參與者等市場情景的洞察之外,Data Bridge Market Research 策劃的市場報告還包括深入的專家分析、按地理位置表示的公司生產和產能、分銷商和合作夥伴的網絡佈局、詳細和更新的價格趨勢分析以及供應鏈和需求的缺口分析。 |
零售邊緣運算市場趨勢
不斷進步的技術進步與創新
- 零售邊緣運算越來越多地用於在源頭處理數據,透過減少零售環境中的延遲來實現即時分析、改善客戶體驗和快速決策
- 例如,亞馬遜網路服務 (AWS) 提供與其零售平台整合的邊緣運算解決方案,以促進庫存管理、個人化促銷和智慧結帳系統的即時資料處理
- 物聯網設備、人工智慧分析和 5G 連接的進步正在推動創新用例,例如無人商店、智慧貨架以及基於即時客戶行為數據的需求預測
- 邊緣運算與雲端 AI 平台的整合使零售商能夠平衡數據隱私和速度,在本地處理敏感數據,同時將匯總洞察同步到集中式雲端系統,以進行更廣泛的策略規劃
- 零售商正在採用模組化和可擴展的邊緣架構來支援全通路策略,實現實體店、電子商務和行動平台之間的無縫互動
- 人們越來越重視永續性和能源效率,促進了低功耗和自適應性能的邊緣設備的開發,以優化零售機構的營運成本
零售邊緣運算市場動態
司機
對低延遲資料處理和即時分析的需求不斷增長
- 客戶對即時服務和個人化購物體驗的期望激增,推動了對邊緣運算解決方案的需求,這些解決方案可以減少資料傳輸延遲並在零售地點提供即時洞察
- 例如,全球零售商利用微軟的 Azure IoT Edge 來支援即時庫存更新和個人化店內促銷等應用程序,從而提高客戶參與度和營運效率
- 零售店內物聯網生態系統的擴展,包括智慧攝影機、感測器和聯網 POS 系統,產生了大量需要立即處理的數據,從而推動了邊緣運算的採用
- 增加對 5G 網路的投資,進一步增強零售商部署邊緣運算解決方案的能力,這些解決方案需要高頻寬和低延遲連線來實現擴增實境體驗和自動結帳系統
- 在擁擠的零售市場中脫穎而出的競爭壓力促使企業採用創新的邊緣驅動技術來優化供應鏈、減少損耗並提高客戶忠誠度
克制/挑戰
成本高,初期投資大
- 實施邊緣運算基礎設施的大量前期成本(包括硬體採購、系統整合和員工培訓)構成了障礙,特別是對於中小型零售商而言
- 例如,由於預算限制和複雜的遺留系統相容性問題,區域零售連鎖店在整合複雜的邊緣網關和人工智慧模組時報告了部署延遲
- 維護和營運費用(包括軟體更新和網路安全措施)會隨著時間的推移增加總擁有成本,使得一些零售商難以確定投資回報率
- 與現有 IT 和雲端系統的整合複雜性需要專門的技術知識,並且可能會在部署階段中斷正在進行的運營
- 資料安全和消費者隱私方面的監管環境變化迫使零售商在合規解決方案上投入巨資,從而增加了初始支出和持續的營運負擔
零售邊緣運算市場範圍
市場根據組件、技術、應用、組織規模和垂直度進行細分。
- 按組件
根據組件,零售邊緣運算市場細分為硬體、網關、微型資料中心、平台以及解決方案和服務。硬體部分在2024年佔據了最大的收入份額,達到52%,這得益於實體零售空間越來越多地採用感測器、路由器和邊緣伺服器來支援即時資料處理。零售商正在部署先進的硬件,以便在不過度依賴雲端基礎設施的情況下支援監控、庫存追蹤、智慧貨架和客戶分析。這種轉變確保了更低的延遲、更高的營運速度和在地化決策,尤其是在大型商店中。邊緣硬體的可擴展性和可靠性使其成為數位優先零售策略不可或缺的一部分。零售商也利用邊緣設備整合非接觸式結帳和店內導航功能。
微型資料中心細分市場預計將在2025年至2032年間實現最快的成長,這得益於其緊湊的模組化設計,支援在空間受限的零售環境中進行邊緣部署。這些中心提供預先配置的貨櫃式基礎設施,可簡化跨多個門市的部署和維護。它們能夠在本地提供企業級計算和存儲,從而實現門市層面的高效數據處理。微型資料中心最大限度地減少了對全尺寸IT機房的需求,降低了成本和實體佔用空間,同時保持了高效能。隨著對分散式運算的需求不斷增長,微型資料中心正成為零售數位化的關鍵解決方案。
- 依技術
根據技術,市場分為移動邊緣運算和霧運算。霧運算領域在2024年佔據了市場主導地位,這得益於其分層方法,該方法將計算任務分佈在設備和本地網路之間。這種模式使零售商能夠分析和處理更靠近源頭的數據,從而縮短回應時間並減少對雲端的依賴。霧運算支援多種零售功能,包括動態定價、庫存更新和安全分析。它能夠協調商店系統和雲端平台之間的資料流,確保跨連鎖店的一致性能。大型零售商更傾向於使用霧架構來擴展其在地理分佈各處的門市的智慧零售業務。
由於行動邊緣運算與行動驅動的零售模式和 5G 基礎設施高度相容,預計將在 2025 年至 2032 年間以最快的速度成長。它允許透過行動應用程式、店內 Wi-Fi 和支援物聯網的設備即時處理客戶互動。行動邊緣運算透過確保超低延遲和情境感知,增強了基於位置的行銷、行動結帳和基於鄰近度的警報。零售商使用這項技術將高度個人化的內容和優惠直接推送到購物者的行動裝置。它在透過行動介面實現 AR 和 VR 等下一代體驗方面發揮的作用,進一步加速了其應用。
- 按應用
根據應用,市場細分為智慧城市、位置服務、分析、環境監測、優化本地內容、資料快取、擴增實境等。分析領域在2024年佔據了最大的市場份額,這得益於零售業對可操作的即時洞察日益增長的需求。邊緣運算分析技術使零售商能夠以最小的延遲監控客流量、產品互動、停留時間和銷售模式。這種本地化處理縮短了資料收集和決策之間的時間,支援敏捷的商品銷售和勞動力管理。零售商正在利用店內分析來推動動態定價、優化貨架佈局並增強客戶參與度。隨著競爭加劇,邊緣分析能力對於維持營運和策略敏捷性至關重要。
擴增實境 (AR) 領域預計將在 2025 年至 2032 年間實現最快成長,這得益於其在沉浸式購物體驗中日益廣泛的應用。邊緣運算透過在店內環境內實現即時影像辨識、空間感知和內容渲染來支援擴增實境 (AR)。這消除了延遲問題,並確保了虛擬試穿、產品視覺化和引導式購物體驗的無縫互動。基於邊緣技術的擴增實境 (AR) 應用可增強消費者參與度,並透過提升決策信心來降低退貨率。零售商正在整合擴增實境 (AR) 試衣鏡和行動擴增實境 (AR) 工具,以彌合線上線下購物之間的差距,從而推動該領域的成長。
- 按組織規模
根據組織規模,市場細分為小型企業、中型企業和大型企業。大型企業憑藉其在數位轉型和可擴展邊緣基礎設施方面的積極投資,在2024年佔據了最大的收入份額。大型零售商和連鎖百貨公司正在利用邊緣運算實現供應鏈視覺化、預測性維護和客戶行為建模。這些企業透過邊緣部署,受益於跨門市、倉庫和數位平台的大規模資料整合。高額的資本支出和強大的IT能力使大型零售商能夠實施端到端的智慧解決方案,從而既能提高營運效率,又能增強客戶體驗。
隨著模組化邊緣解決方案變得更加便利和經濟實惠,小型企業市場預計將在2025年至2032年間以最快的速度成長。緊湊型微型資料中心和即插即用的邊緣服務使小型零售商無需大量IT人員或基礎設施即可從即時分析、庫存優化和數位看板中受益。邊緣即服務模式進一步降低了進入門檻,即使是獨立門市也能利用數據實現個人化的顧客互動。隨著與大型企業的競爭加劇,小型零售商越來越多地轉向邊緣技術,以保持競爭力和敏捷性。
- 按垂直
依垂直產業細分,市場可分為製造業、醫療保健、運輸、政府及公共事業、媒體及娛樂、能源及公用事業、電信及IT、零售業及其他。隨著各大品牌迅速部署邊緣運算以支援全通路模式、智慧結帳和店內自動化,零售業在2024年佔據了市場主導地位。邊緣基礎設施使零售商能夠在本地收集和處理數據,從而支援即時促銷、詐欺偵測和機器人店員等應用程式。邊緣技術能夠即時適應消費者行為,同時保護資料隱私,使其成為零售現代化的關鍵驅動力。隨著人們對個人化和效率的日益關注,邊緣運算已成為面向未來的零售營運的基礎。
由於病患照護、診斷和醫學影像領域對即時資料處理的需求不斷增長,預計醫療保健領域將在2025年至2032年期間經歷最快的成長。邊緣運算支援去中心化資料處理,這對於支援穿戴式裝置、智慧診斷和遠端患者監控至關重要。透過降低延遲並在護理點附近處理數據,邊緣解決方案可幫助醫療保健提供者提供更快、更準確的服務。為了確保符合健康數據法規,對本地數據處理的需求也在推動邊緣運算的採用。醫院、診所和診斷中心越來越多地整合邊緣系統,以實現高效、安全的運作。
零售邊緣運算市場區域分析
- 北美在零售邊緣運算市場佔據主導地位,2024 年的收入份額最高,為 46.30%,這得益於對即時數據處理和強大基礎設施的需求不斷增長,以支持零售業的數位轉型
- 該地區的零售商正在迅速部署邊緣運算,透過個人化內容、高效的庫存管理和更快的結帳來提升客戶體驗
- 該地區先進的 IT 生態系統、強大的雲端採用率以及對物聯網和人工智慧驅動的邊緣分析日益增長的依賴進一步推動了這一廣泛採用
美國零售邊緣運算市場洞察
2024年,美國零售邊緣運算市場佔據北美最大份額,這得益於美國零售業的主導地位、成熟的雲端生態系統以及向自動化和個人化客戶體驗的加速轉型。零售商正在積極部署邊緣運算,以管理在地化工作負載、優化定價策略,並實現對動態客戶互動的預測分析。邊緣解決方案與5G、人工智慧和物聯網設備的整合正日益普及,使零售商能夠運行智慧結帳系統、實現庫存管理自動化,並進行即時促銷。科技驅動型零售巨頭的強勢存在以及有利的投資環境,將繼續推動邊緣運算在實體和數位零售接點上的部署。
歐洲零售邊緣運算市場洞察
預計歐洲零售邊緣運算市場將在預測期內穩步成長,這得益於該地區對資料保護、高效營運和零售領域技術現代化的重視。德國、法國和英國等國的零售商正積極採用邊緣運算,以遵守《一般資料保護規範》(GDPR),改善即時決策,並降低資料傳輸延遲。該技術在確保數據主權的同時,實現了個人化行銷、高效的結帳流程和店內分析。向混合雲邊緣模式的轉變,加上對5G和人工智慧的投資,正在改變歐洲的零售格局,並推動可擴展邊緣基礎設施的需求。
英國零售邊緣運算市場洞察
英國零售邊緣運算市場有望實現顯著成長,這得益於智慧零售系統的廣泛應用、消費者期望的不斷變化以及消費者對非接觸式零售解決方案日益增長的偏好。零售商正在部署邊緣運算,以支援自動結帳系統、智慧貨架和人工智慧驅動的客戶行為分析。英國完善的電信基礎設施和先進的監管框架也促進了零售環境中邊緣運算部署的擴展。隨著消費者對無縫、安全和個人化體驗的需求日益增長,英國零售商正在投資在地化邊緣運算系統,以便在電商和實體店中提供低延遲效能和即時洞察。
德國零售邊緣運算市場洞察
德國零售邊緣運算市場因其高度重視數位創新、工業自動化和資料隱私而迅速擴張。零售商正在利用邊緣運算來增強供應鏈可視性、監控店內系統並支援動態定價策略。德國強大的物流網路和智慧零售基礎設施正在推動即時邊緣分析的應用,以提高客戶滿意度和營運效率。隨著永續性和能源效率成為關鍵關注點,邊緣解決方案也正在與環境監測系統整合,以幫助零售商實現環境、社會和治理 (ESG) 目標。德國對隱私、創新和智慧技術的重視使其成為歐洲邊緣運算應用的關鍵市場。
亞太零售邊緣運算市場洞察
預計2025年至2032年,亞太地區零售邊緣運算市場將以最快的複合年增長率成長,這主要得益於中國、日本和印度等主要經濟體城鎮化進程加快、可支配收入成長以及技術的快速進步。該地區的零售商正在轉向邊緣運算以支援數位轉型,尤其是在延遲和頻寬至關重要的人口密集城市地區。隨著智慧門市、人工智慧驅動的分析和自助服務技術的激增,邊緣運算正成為提升客戶體驗和營運靈活性的關鍵。政府對智慧基礎設施的支持,加上該地區強大的製造能力,正在推動零售業邊緣解決方案的可負擔性和可近性。
日本零售邊緣運算市場洞察
由於日本技術成熟度高且智慧零售解決方案的普及率不斷提高,日本零售邊緣運算市場正在加速發展。零售商正在實施邊緣運算,以支援便利商店和購物中心的自動化、預測分析和非接觸式零售營運。邊緣運算與機器人、人工智慧和物聯網系統的整合正在提高結帳流程、客戶服務和庫存追蹤的效率。由於日本面臨勞動力短缺和人口老化問題,邊緣運算使零售商能夠簡化營運並提供用戶友好的解決方案。對安全、在地化資料處理的需求也與日本高度重視隱私和技術創新相契合。
中國零售邊緣運算市場洞察
2024年,中國佔據亞太零售邊緣運算市場的最大收入份額,這得益於其主導的電商生態系統、強勁的5G部署以及積極推進智慧城市建設。中國各地的零售商正在部署邊緣運算,以支援無人商店、即時促銷和高度個人化的購物體驗。中國擁有眾多科技製造商和創新中心,能夠以極具競爭力的成本快速部署邊緣基礎設施。國內零售巨頭和新創公司都在利用邊緣網絡,利用人工智慧、視訊分析和物聯網整合來提升消費者參與度和營運效率。中國的數位轉型方法和可擴展的生態系統使其成為全球零售邊緣運算領域的關鍵成長引擎。
零售邊緣運算市場份額
零售邊緣運算產業主要由知名公司主導,包括:
- 諾基亞(芬蘭)
- 華為技術有限公司 (中國)
- 瞻博網路公司(美國)
- 戴爾公司(美國)
- 思科系統公司(美國)
- 惠普企業開發有限公司(美國)
- SixSq SA(瑞士)
- FogHorn Systems(美國)
- Vasona Networks Inc.(美國)
- 機械車間公司(美國)
- Saguna Networks Ltd.(以色列)
- Vapor IO(美國)
- Violin Systems(美國)
- Aricent(美國)
- 凌華科技(美國)
- 亞馬遜網路服務公司(美國)
- 通用電氣(美國)
- IBM公司(美國)
- 英特爾公司(美國)
- 微軟(美國)
- SAP SE(德國)
全球零售邊緣運算市場的最新發展
- 2025年2月,隨著電網現代化、電氣化和分散式能源整合需求的日益增長,微軟擴展了其邊緣運算計劃,以加強對公用事業部門的支援。此次擴充專注於混合邊緣雲端架構,將SCADA、EMS和DERMS等關鍵系統與微軟雲端連接起來。此舉將微軟定位為能源基礎設施領域(尤其是在歐洲和北美)提供彈性且安全的邊緣解決方案的關鍵推動者,同時強化了邊緣運算在需要高可靠性和即時反應的關鍵任務產業中的價值。
- 2023年4月,戴爾科技集團與愛立信達成策略合作,共同開發能夠在遠端提供電信級效能的開放式雲端網路。透過將戴爾PowerEdge伺服器(包括XR8000和XR5610)整合到愛立信的Cloud RAN解決方案中,此合作將為客戶提供更高的靈活性和部署邊緣基礎設施的選擇。這些伺服器專為行動邊緣運算和Open RAN工作負載而設計,可提升效能、互聯互通和營運效率。此次合作顯著增強了戴爾在電信邊緣市場的影響力,為現代電信環境提供可擴展的高效能邊緣運算。
- 2023年4月,諾基亞為其MX工業邊緣平台推出了四款第三方應用程序,旨在幫助企業連接、收集和分析來自各種營運技術(OT)來源(例如攝影機)的數據。此次發布支援安全的本地邊緣部署,並增強了對OT資產的即時洞察。透過釋放先前孤立的數據,諾基亞賦能企業做出更快、更明智的決策,鞏固其在工業邊緣運算市場的地位,並擴展了面向製造業和關鍵基礎設施領域的智慧邊緣解決方案生態系統。
- 2023年2月,思科推出了思科邊緣智慧 (Cisco Edge Intelligence),這是一款資料治理和資產洞察解決方案,旨在從連網裝置中提取可操作的情報。該工具基於思科的多層安全框架構建,可增強採用物聯網和邊緣架構的企業的資料控制和營運視覺性。透過簡化邊緣資料管理並提高決策效率,思科增強了其在工業和商業邊緣環境中的產品服務,從而提升了其在邊緣運算市場的競爭力。
- 2022年2月,IBM 收購了 Sentaca,以擴展其混合雲諮詢能力,並為通訊服務供應商 (CSP) 提供進階支援。此次收購旨在加速 IBM 雲端平台的現代化,並增強其向電信業提供邊緣運算解決方案的能力。這項策略性措施鞏固了 IBM 在邊緣運算和混合雲端生態系統中的地位,為電信客戶提供客製化的諮詢和整合服務,從而簡化邊緣運算的數位轉型。
SKU-
Get online access to the report on the World's First Market Intelligence Cloud
- Interactive Data Analysis Dashboard
- Company Analysis Dashboard for high growth potential opportunities
- Research Analyst Access for customization & queries
- Competitor Analysis with Interactive dashboard
- Latest News, Updates & Trend analysis
- Harness the Power of Benchmark Analysis for Comprehensive Competitor Tracking
研究方法
数据收集和基准年分析是使用具有大样本量的数据收集模块完成的。该阶段包括通过各种来源和策略获取市场信息或相关数据。它包括提前检查和规划从过去获得的所有数据。它同样包括检查不同信息源中出现的信息不一致。使用市场统计和连贯模型分析和估计市场数据。此外,市场份额分析和关键趋势分析是市场报告中的主要成功因素。要了解更多信息,请请求分析师致电或下拉您的询问。
DBMR 研究团队使用的关键研究方法是数据三角测量,其中包括数据挖掘、数据变量对市场影响的分析和主要(行业专家)验证。数据模型包括供应商定位网格、市场时间线分析、市场概览和指南、公司定位网格、专利分析、定价分析、公司市场份额分析、测量标准、全球与区域和供应商份额分析。要了解有关研究方法的更多信息,请向我们的行业专家咨询。
可定制
Data Bridge Market Research 是高级形成性研究领域的领导者。我们为向现有和新客户提供符合其目标的数据和分析而感到自豪。报告可定制,包括目标品牌的价格趋势分析、了解其他国家的市场(索取国家列表)、临床试验结果数据、文献综述、翻新市场和产品基础分析。目标竞争对手的市场分析可以从基于技术的分析到市场组合策略进行分析。我们可以按照您所需的格式和数据样式添加您需要的任意数量的竞争对手数据。我们的分析师团队还可以为您提供原始 Excel 文件数据透视表(事实手册)中的数据,或者可以帮助您根据报告中的数据集创建演示文稿。

