Global Small Language Model Slm Market
市场规模(十亿美元)
CAGR :
%
USD
5.30 Billion
USD
26.70 Billion
2024
2032
| 2025 –2032 | |
| USD 5.30 Billion | |
| USD 26.70 Billion | |
|
|
|
|
全球小語言模型 (SLM) 市場細分,按技術(基於深度學習、基於機器學習和服務)、部署(雲端、本地和混合)、應用(消費者應用、企業應用、醫療保健、金融、零售、法律、製造等)- 行業趨勢和預測到 2032 年
小型語言模式(SLM)市場規模
- 2024 年全球小語言模型 (SLM) 市場規模為53 億美元,預計到 2032 年將達到 267 億美元,預測期內 複合年增長率為 22.40%。
- 市場成長主要得益於各行各業越來越多地採用人工智慧自動化和自然語言處理,從而提高了客戶服務、內容創建和數據分析的效率並改善了用戶體驗
- 此外,醫療保健、金融、零售和法律領域對個人化、情境感知應用的需求不斷增長,正在將小型語言模型確立為智慧決策和工作流程優化的重要工具
小語言模型(SLM)市場分析
- 小型語言模型 (SLM) 提供先進的自然語言理解和生成功能,由於其能夠提供個人化、情境感知的互動並自動執行複雜的語言任務,正在成為客戶服務、醫療保健、金融和零售等多個行業現代人工智慧驅動應用程式的重要組成部分
- SLM 需求的成長主要源自於快速的數位轉型、人工智慧自動化的日益普及,以及對高效、可擴展解決方案日益增長的需求,這些解決方案可以增強用戶體驗並簡化業務流程
- 由於各行各業廣泛採用人工智慧應用程序,以及對先進人工智慧研究和基礎設施的大力投資,北美在 2024 年佔據小型語言模型 (SLM) 市場的主導地位,份額為32.2%
- 由於數位化進程加快、互聯網普及率不斷提高以及中國、日本和印度的人工智慧應用日益普及,亞太地區預計將成為預測期內小語言模型 (SLM) 市場成長最快的地區
- 機器學習領域憑藉其在處理各種語言任務方面的多功能性和成本效益,在2024年佔據了55.6%的市場份額,佔據了市場主導地位。在尋求可擴展、中等複雜度和更快部署時間的解決方案的行業中,機器學習的採用率正在上升。涵蓋諮詢、整合和支援在內的服務在促進小型語言模型的實施和優化方面發揮著至關重要的作用,尤其對於缺乏內部人工智慧專業知識的企業而言。
報告範圍和小語言模型(SLM)市場細分
|
屬性 |
小語言模型(SLM)關鍵市場洞察 |
|
涵蓋的領域 |
|
|
覆蓋國家 |
北美洲
歐洲
亞太
中東和非洲
南美洲
|
|
主要市場參與者 |
|
|
市場機會 |
|
|
加值資料資訊集 |
除了市場價值、成長率、市場區隔、地理覆蓋範圍、市場參與者和市場情景等市場洞察之外,Data Bridge 市場研究團隊策劃的市場報告還包括深入的專家分析、進出口分析、定價分析、生產消費分析和 pestle 分析。 |
小語言模型(SLM)市場趨勢
“增加基於雲端的部署:”
- 全球小型語言模式 (SLM) 市場的一個重要且加速的趨勢是越來越多地轉向基於雲端的部署,從而實現跨行業可擴展、靈活且經濟高效地存取 AI 驅動的語言功能
- 例如,OpenAI 的 GPT 模型和 Google 的 Vertex AI 提供雲端託管的小型語言模型服務,使企業無需進行大量的本地基礎設施投資即可整合高階語言處理
- 雲端部署有利於持續更新模型、與其他雲端服務的無縫整合以及跨團隊的更輕鬆協作,從而顯著提高可訪問性並縮短 AI 應用的上市時間
- Microsoft Azure 和 Amazon Web Services (AWS) 等公司提供託管的 SLM 平台,支援快速開發和部署自然語言處理解決方案,使企業能夠利用尖端人工智慧,而無需大量的技術開銷
- 這種基於雲端的 SLM 部署趨勢正在推動醫療保健、金融、零售和客戶服務等領域的更廣泛採用,在這些領域,可擴展且可靠的 AI 語言解決方案對於數位轉型至關重要
- 對雲端託管 SLM 的日益青睞反映了對靈活、按需 AI 功能的需求,這些功能可以處理動態工作負載,使組織能夠更快地創新並大規模提供個人化的用戶體驗
小語言模型(SLM)市場動態
司機
“人工智慧自動化的採用率不斷提高”
- 隨著企業尋求簡化營運、提高生產力並提供基於語言的智慧用戶交互,各行各業越來越多地採用人工智慧自動化,這是對小型語言模型 (SLM) 需求不斷增長的重要驅動力
- 例如,2024 年 2 月,微軟將小規模 AI 語言模型整合到其 Dynamics 365 套件中,實現了自動客戶回應、即時資料匯總和自然語言查詢,使用戶能夠透過簡單的文字輸入來操作複雜的系統
- 隨著企業致力於減少手動工作量並加快決策流程,語言生命週期管理 (SLM) 為客戶服務聊天機器人、文件生成和語言翻譯等任務的自動化提供了高效的解決方案,幫助企業提升用戶參與度和營運效率。此外,醫療保健、金融和零售等行業對人工智慧助理和虛擬代理的部署日益增多,也加劇了對緊湊型、領域特定語言模型的需求,這些模型能夠以更低的資源消耗提供高效能。
- SLM 能夠針對特定應用進行微調,而且與大型語言模型相比部署成本較低,因此對於首次採用 AI 或擴展 AI 整合到各個功能的企業來說尤其具有吸引力
- 人工智慧自動化的趨勢以及 OpenAI、Google Cloud 和 AWS 等供應商提供的預訓練雲端託管 SLM 的日益普及,預計將加速中小企業和大型企業對這些模型的採用
克制/挑戰
“有限的模型尺寸限制了準確性和上下文理解”
- 有限的模型大小限制了準確性和上下文理解,這對小型語言模型 (SLM) 的廣泛採用構成了重大挑戰,特別是在需要細緻入微、特定領域響應的企業應用中
- 例如,雖然 Meta 的 LLaMA 模型和 Cohere 的 Command R+ 旨在較小規模上高效運行,但它們往往難以理解長上下文,或無法產生法律或醫療保健等領域所需的高精度輸出
- 在減少運算資源的情況下保持高品質的語言生成,迫使開發人員在效率和語言效能之間做出權衡,尤其是在即時或邊緣裝置上部署 SLM 時
- 隨著對緊湊、經濟高效的AI工具的需求不斷增長,這些工具可以與大型 LLM 的功能相媲美,克服小型架構的局限性將需要在模型設計、訓練方法和微調策略方面不斷取得進步
- 透過研究創新、對特定任務調整的投資以及改進的訓練資料品質來應對這一挑戰,對於確保 SLM 能夠滿足行業期望且不影響性能至關重要
小語言模型(SLM)市場範圍
市場根據技術、部署和應用進行細分。
- 依技術
根據技術,小型語言模型市場細分為基於深度學習、基於機器學習和服務。基於機器學習的細分市場在2024年佔據了最大的市場收入份額,達到55.6%,這得益於其在處理各種語言任務方面的多功能性和成本效益。在尋求可擴展、中等複雜度和更快部署時間的解決方案的行業中,小型語言模型的採用正在日益增加。包括諮詢、整合和支援在內的服務在促進小型語言模型的實施和優化方面發揮著至關重要的作用,尤其對於缺乏內部AI專業知識的企業。
預計深度學習領域將在2025年至2032年期間實現最快的成長,這得益於其理解複雜語言模式並提供更準確、更符合情境的輸出的卓越能力。該技術受益於神經網路架構和海量資料集的不斷進步,使其成為需要高精度和高適應性應用的首選。
- 按部署
根據部署方式,市場細分為雲端部署、本地部署和混合部署。雲端部署在2024年佔據了最大的市場收入份額,達到45.3%,這得益於其可擴展性、成本效益和易於訪問的特性,使企業無需投入大量基礎設施即可利用小型語言模型。雲端部署還支援持續的模型更新以及與其他雲端服務的無縫集成,從而增強功能和用戶體驗。
預計混合雲領域將在2025年至2032年期間實現最快的複合年增長率,這得益於企業日益增長的需求,即結合雲端運算的靈活性與本地基礎設施的安全性和控制力。混合部署適合資料隱私法規嚴格的行業,允許敏感資料保留在本地,同時受益於雲端功能。對於需要最大程度控制資料和模型的行業,尤其是在監管嚴格的環境中,本地部署仍然至關重要。
- 按應用
根據應用領域,小型語言模型市場細分為消費性應用、企業級應用、醫療保健、金融、零售、法律、製造和其他。消費性應用在2024年佔據了最大的市場收入份額,這得益於虛擬助理、聊天機器人和個人化內容生成的日益普及。其易於整合到日常設備和服務中,推動了消費者的參與和需求。
預計企業應用領域將在2025年至2032年期間實現最快的複合年增長率,這得益於自動化客戶支援、文件處理和知識管理需求的不斷增長。醫療保健和金融等行業受益於針對臨床文件、詐欺檢測和合規性量身定制的專用語言模型,從而進一步加速其應用。零售和法律行業越來越多地利用這些模型來提升客戶體驗並簡化工作流程,而製造業則將語言模型用於技術文件和供應鏈溝通。其他領域包括教育、媒體和政府應用,這些應用也因數位轉型力度的加強而不斷擴展。
小語言模型(SLM)市場區域分析
- 北美在小型語言模型 (SLM) 市場佔據主導地位,2024 年的收入份額最高,為 32.2%,這得益於各行各業廣泛採用人工智慧應用以及對先進人工智慧研究和基礎設施的大力投資
- 該地區的組織高度重視小型語言模型的集成,以增強自動化、改善客戶互動並簡化醫療保健、金融和零售等領域的工作流程
- 技術專長、高額 IT 支出以及領先 AI 公司的存在進一步支持了這一採用,使北美成為 SLM 解決方案創新和部署的關鍵樞紐
美國小語言模型市場洞察
2024年,美國服務級語言管理 (SLM) 市場佔據了北美最大的收入份額,這得益於快速的數位轉型以及對用於優化業務流程的人工智慧驅動工具的需求。虛擬助理、聊天機器人和自動化內容生成的日益普及,促進了市場的成長。對自然語言理解和客戶體驗提升的日益關注,加上政府對人工智慧專案的大力支持,進一步加速了市場的發展。此外,美國科技巨頭們正在持續投資開發複雜的小型語言模型,以支援其在多個領域的廣泛應用。
歐洲小語言模型市場洞察
預計歐洲服務生命週期管理 (SLM) 市場將在預測期內穩步增長,這得益於人們對人工智慧應用的認識不斷提高,以及旨在促進資料隱私和負責任的人工智慧使用的支援性法規的出台。對人工智慧研究中心的投資不斷增加,以及產學研合作的不斷加強,正在推動創新。歐洲企業正在採用服務生命週期管理 (SLM) 來提升營運效率、客戶參與度和合規性管理,尤其是在金融、醫療保健和法律領域。
英國小語言模型市場洞察
預計英國語言語言管理 (SLM) 市場將在預測期內實現顯著成長,這得益於政府對人工智慧策略和數位創新的高度重視。公共服務、金融和零售業對人工智慧的採用日益增多,這推動了對小型語言模式的需求。此外,不斷壯大的新創公司和技術孵化器正在加速人工智慧語言解決方案的創新與整合。
德國小語言模型市場洞察
由於其強大的工業基礎和對工業4.0人工智慧的重視,德國SLM市場預計將以強勁的複合年增長率擴張。對資料安全、隱私和符合倫理道德的人工智慧應用的日益關注,推動了製造業、法律和醫療保健行業的應用。德國完善的人工智慧研究機構和政府推動人工智慧創新的舉措,進一步增強了市場成長。
亞太小語言模型市場洞察
亞太地區的語言模型管理 (SLM) 市場預計將實現最快的成長,其複合年增長率 (CAGR) 預計在 2025 年至 2032 年之間,這主要得益於數位化的快速發展、互聯網普及率的不斷提高以及中國、日本和印度等地應用人工智慧的日益普及。政府推動人工智慧發展和智慧技術的舉措正在加速其部署。對人工智慧新創公司和技術基礎設施的投資不斷增加,也提升了該地區小型語言模型解決方案的可近性和可負擔性。
日本小語言模型市場洞察
日本SLM市場憑藉其先進的技術生態系統和對自動化的重視而蓬勃發展。人工智慧在消費性電子、機器人和企業應用中的日益普及推動了需求成長。日本人口老化也推動了對能夠提升可及性和效率的人工智慧解決方案的需求,尤其是在醫療保健和客戶服務領域。 SLM與物聯網設備和智慧系統的整合將支援市場的持續成長。
中國小語言模型市場洞察
2024年,中國佔據了亞太地區語言生命週期管理 (SLM) 市場的最大收入份額,這得益於政府對人工智慧發展的支持、不斷擴張的數位經濟以及大量科技公司對語言人工智慧的投資。智慧城市的建設、電子商務的成長以及行動裝置的廣泛應用支撐了各行各業的需求。本土人工智慧公司具有競爭力的價格和快速的創新是其在中國市場保持領先地位的關鍵因素。
小型語言模型(SLM)市場份額
小型語言模式 (SLM) 產業主要由知名公司主導,包括:
- OpenAI(美國)
- 人類學(美國)
- Google DeepMind(英國)
- Cohere(加拿大)
- Reka AI(美國)
- 智普人工智慧(中國)
- Nomic AI(美國)
- 穩定性人工智慧(英國)
- LightOn(法國)
- Sarvam AI(印度)
- Arcee AI(美國)
- Prem Labs(美國)
- Meta AI(美國)
- 微軟(美國)
- Salesforce AI(美國)
- 阿里巴巴(中國)
- Mosaic ML(美國)
- 技術創新研究所(TII)(阿聯酋)
- 擁抱的臉(美國)
全球小語言模式(SLM)市場的最新發展
- 2025年2月,微軟推出Phi-4系列,包括Phi-4-mini-instruct和Phi-4-multimodal,進一步拓展了其在SLM市場的佈局。這些模型在推理、多語言理解和編碼方面提供了增強的功能,使其成為企業和開發者的理想選擇。這些模型將在Hugging Face、Azure AI Foundry和Ollama等平台上推出,預計將顯著拓寬用戶訪問範圍,並加速各行各業的採用。
- 2025年2月,IBM 擴展了其 Granite 模型產品線,涵蓋企業應用的多模態和推理模型。憑藉 Granite Multimodal 和 Granite Reasoning,IBM 正在滿足對可解釋且具備邏輯能力的 AI 的迫切需求,從而有望在 SLM 市場中以企業為中心的細分市場中佔據更大的份額。這些工具旨在實現無縫整合和負責任的採用,從而增強 AI 驅動的決策和自動化。
- 2025年1月,Arcee AI發表了兩款基於DeepSeek-V3的全新SLM——Virtuoso-Lite和Virtuoso-Medium-v2,進一步鞏固了其競爭地位。這些模型,尤其是Virtuoso-Medium-v2,其效能超越了Arcee先前的基準測試,提升了數學和程式碼應用的效能。其先進的架構和專有技術有望推動SLM市場學術和技術用例的創新。
- 2024年11月,亞馬遜向Anthropic追加投資40億美元,鞏固了在人工智慧領域的領先地位。此舉,加上由AWS Trainium支持的Claude模型(例如Claude 3.5 Haiku和Claude 3.5 Sonnet)的訓練,彰顯了亞馬遜在高性能代理模型領域取得領先地位的雄心。 Claude系列在編碼任務中的出色表現,使其成為商業SLM領域(尤其是在以開發者為中心的應用中)的重要貢獻者。
- 2024年4月,微軟推出了“Phi-3-mini”,這是一款輕量級AI模型,旨在以更低的成本為更廣泛的用戶帶來高級語言能力。透過Microsoft Azure AI模型目錄、Hugging Face、Ollama和NVIDIA NIM等平台提供此模型,微軟正在鞏固其在小型語言模型(SLM)市場的地位。此次發布標誌著其開放式SLM系列的啟動,顯著提升了其可訪問性,並促進了各行各業的廣泛採用。
SKU-
Get online access to the report on the World's First Market Intelligence Cloud
- Interactive Data Analysis Dashboard
- Company Analysis Dashboard for high growth potential opportunities
- Research Analyst Access for customization & queries
- Competitor Analysis with Interactive dashboard
- Latest News, Updates & Trend analysis
- Harness the Power of Benchmark Analysis for Comprehensive Competitor Tracking
研究方法
数据收集和基准年分析是使用具有大样本量的数据收集模块完成的。该阶段包括通过各种来源和策略获取市场信息或相关数据。它包括提前检查和规划从过去获得的所有数据。它同样包括检查不同信息源中出现的信息不一致。使用市场统计和连贯模型分析和估计市场数据。此外,市场份额分析和关键趋势分析是市场报告中的主要成功因素。要了解更多信息,请请求分析师致电或下拉您的询问。
DBMR 研究团队使用的关键研究方法是数据三角测量,其中包括数据挖掘、数据变量对市场影响的分析和主要(行业专家)验证。数据模型包括供应商定位网格、市场时间线分析、市场概览和指南、公司定位网格、专利分析、定价分析、公司市场份额分析、测量标准、全球与区域和供应商份额分析。要了解有关研究方法的更多信息,请向我们的行业专家咨询。
可定制
Data Bridge Market Research 是高级形成性研究领域的领导者。我们为向现有和新客户提供符合其目标的数据和分析而感到自豪。报告可定制,包括目标品牌的价格趋势分析、了解其他国家的市场(索取国家列表)、临床试验结果数据、文献综述、翻新市场和产品基础分析。目标竞争对手的市场分析可以从基于技术的分析到市场组合策略进行分析。我们可以按照您所需的格式和数据样式添加您需要的任意数量的竞争对手数据。我们的分析师团队还可以为您提供原始 Excel 文件数据透视表(事实手册)中的数据,或者可以帮助您根据报告中的数据集创建演示文稿。

