Global Swarm Intelligence Market
市场规模(十亿美元)
CAGR :
%
USD
4.92 Billion
USD
21.31 Billion
2024
2032
| 2025 –2032 | |
| USD 4.92 Billion | |
| USD 21.31 Billion | |
|
|
|
|
全球群體智慧市場細分,按模型(粒子群優化、蟻群優化等)、功能(聚類、優化、路由和調度)、應用(無人機、機器人和人類群體)——行業趨勢和預測至 2032 年
群體智慧市場規模
- 2024 年全球群體智慧市場規模為49.2 億美元 ,預計 到 2032 年將達到 213.1 億美元,預測期內 複合年增長率為 20.10%。
- 市場成長主要受到各行各業對分散和可擴展人工智慧解決方案不斷增長的需求的推動。它能夠即時解決複雜問題,非常適合物流、機器人和軍事應用。
- 此外,無人機和自主系統的使用日益增多也推動了其採用。機器學習和數據分析的進步支持了它的發展。各行各業都在尋求能夠適應和自我優化的靈活系統,而群體智慧正好可以提供這種系統。不斷成長的研發投入和技術創新進一步加速了市場擴張。
群體智慧市場分析
- 群體智能是研究自組織、分散系統。它是批判智慧的形式之一。然而,它主要受到生物學的驅動和啟發。人類創造的物品也屬於群體智慧的範疇。在軟體和機器人技術中,群體智慧包括將科學家從觀察自然中獲得的知識應用到機器上。機器人群很簡單,這些代理由聲納、雷達或攝影機組成,用於收集周圍的資訊和環境。
- 北美在群體智慧市場佔據主導地位,2025 年的收入份額最大,為 43.78%,其特點是群體智慧系統在軍事和國防活動中大規模應用。
- 由於無人機領域投資的不斷增加,群體智慧市場也將隨之成長,因此預計亞太地區將成為預測期內群體智慧市場成長最快的地區。
- 粒子群優化領域預計將在 2025 年佔據群體智慧市場的主導地位,市場份額為 41.62%,這得益於其在解決物流、金融和工程等行業的複雜優化問題方面的有效性。
報告範圍和群體智慧市場細分
|
屬性 |
群體智慧關鍵市場洞察 |
|
涵蓋的領域 |
|
|
覆蓋國家 |
北美洲
歐洲
亞太
中東和非洲
南美洲
|
|
主要市場參與者 |
|
|
市場機會 |
|
|
加值資料資訊集 |
除了對市場價值、成長率、細分、地理覆蓋範圍和主要參與者等市場情景的洞察之外,Data Bridge Market Research 策劃的市場報告還包括深入的專家分析、定價分析、品牌份額分析、消費者調查、人口統計分析、供應鏈分析、價值鏈分析、原材料/消耗品概述、供應商選擇標準、PESTLE 分析、波特分析和監管框架。 |
群體智慧市場趨勢
“運輸與物流最佳化”
- 群體智慧正在透過使自主系統優化路線、管理車隊和提高整體效率來徹底改變運輸和物流行業。
- 在倉庫環境中,自主移動機器人 (AMR) 車隊可以協調其運動來運輸貨物,從而減少人工幹預的需要並最大限度地減少錯誤。
- 在更廣泛的交通網路中,群體智慧演算法可以分析即時數據來調整交通流量、優化運輸路線並提高燃油效率。這可以節省成本、減少對環境的影響並縮短服務交付時間。
- 例如,2024 年 2 月,CH Robinson 開始利用人工智慧實現運輸流程自動化,特別注重貨運中的非接觸式預約。透過利用人工智慧技術和龐大的航運資訊資料庫,CH Robinson 旨在進一步實現供應鏈自動化、簡化營運並增強供應鏈優化。
群體智慧市場動態
司機
“群體智慧增強運輸與物流”
- 群體智慧正在透過使自主系統優化路線、管理車隊和提高整體效率來徹底改變運輸和物流行業。在倉庫環境中,自主移動機器人 (AMR) 車隊可以協調其運動來運輸貨物,從而減少人工幹預的需要並最大限度地減少錯誤。在更廣泛的交通網路中,群體智慧演算法可以分析即時數據來調整交通流量、優化運輸路線並提高燃油效率。
- 這可以節省成本、減少對環境的影響並縮短服務交付時間。群體智慧的分散性允許可擴展的解決方案,以適應不同的營運需求。隨著電子商務的持續成長,對高效智慧物流解決方案的需求預計將推動群體智慧技術的進一步應用。
- 公司正在加大對研發的投資,將群體智慧融入其物流營運中,旨在在不斷變化的市場格局中保持競爭力。
- 例如, 2024 年 2 月,CH Robinson 開始利用人工智慧實現航運流程自動化,特別注重貨運中的非接觸式預約。透過利用人工智慧技術和龐大的航運資訊資料庫,CH Robinson 旨在進一步實現供應鏈自動化、簡化營運並增強供應鏈優化。這項措施體現了將群體智慧融入物流以提高效率和降低營運成本的成長趨勢。隨著公司尋求滿足物流行業日益增長的需求,此類技術的採用預計將變得更加廣泛。 CH Robinson的舉措標誌著其朝向更智慧和自動化的物流解決方案邁出了一步。
克制/挑戰
“缺乏認識和理解”
- 全球群體智慧市場面臨的一個主要挑戰是企業和產業對其潛在應用的認識和理解有限。許多組織不熟悉如何將群體智慧應用於他們的特定需求,導致在採用這些先進的解決方案時猶豫不決。
- 這種知識差距可能會阻礙市場滲透並減緩該行業的整體成長。儘管人們對人工智慧和機器學習的興趣日益濃厚,但群體智慧仍然是一個小眾領域,其好處往往沒有被潛在用戶充分認識到。為了克服這一障礙,努力教育和告知利害關係人群體智慧的優勢和可能性至關重要。
- 如果沒有提高認識和理解,群體智慧技術的採用可能會繼續受到限制,從而影響市場的擴張。
- 例如, 2023 年 7 月,Unanimous AI 和 Sentient Technologies 與國防承包商建立戰略合作夥伴關係,以開發軍用級群體機器人解決方案。這些系統旨在利用協作自主無人機加強監視和偵察任務,反映了軍方對群體智慧應用日益增長的興趣。這一發展凸顯了人們對群體智慧在關鍵領域的潛力的日益認可,並可能影響其在各行業的更廣泛應用。
群體智慧市場範圍
市場根據型號、能力和應用進行細分
- 按型號
在這個模型上,群體智慧市場細分為粒子群優化、蟻群優化等。粒子群優化領域預計將在 2025 年佔據群體智慧市場的主導地位,市場份額為 41.62%,這得益於其在解決物流、金融和工程等行業的複雜優化問題方面的有效性。
預計從 2025 年到 2032 年,蟻群優化領域將實現 24.1% 的最快成長率,這得益於解決物流、機器人和網路路由等領域複雜優化問題的效率。其受自然啟發的演算法使其能夠適應並可擴展至現實世界的應用。
- 按能力
從能力來看,群體智慧市場分為聚類、最佳化、路由和調度。由於能夠有效分析大型資料集並發現隱藏模式,聚類將在 2025 年佔據最大的市場收入份額。該技術廣泛應用於醫療保健、金融和網路安全等行業的決策和風險評估。它與人工智慧工具的日益融合繼續推動其需求。
預計優化領域將在 2025 年至 2032 年間見證最快的複合年增長率,這得益於其對提高效率和降低營運成本的智慧系統的需求不斷增長。物流、製造和能源等行業正在利用基於群體的最佳化來即時解決問題。它的可擴展性和適應性使其成為複雜、動態環境的理想選擇。
- 按應用
在應用上,群體智慧市場細分為無人機、機器人和人類群體智慧。 2024 年,無人機領域佔據了最大的市場收入份額,這得益於群體智慧在監視、配送和軍事行動中的日益廣泛的應用。協調的無人機群在各種任務中提供更好的覆蓋範圍、效率和彈性。這項技術越來越多地被政府和商業部門所採用。
預計機器人領域將在 2025 年至 2032 年間見證最快的複合年增長率,這得益於群體智慧在協作自動化中的日益普及。群體機器人技術增強了製造業、農業和國防等產業的靈活性和可擴展性。它透過簡單、協調的代理執行複雜任務的能力正在徹底改變自主系統。
群體智慧市場區域分析
- 北美在群體智慧市場佔據主導地位,2025 年的收入份額最大,為 43.78%,其特點是群體智慧系統在軍事和國防活動中大規模應用
- 此外,大規模利用群體智慧工具和人工智慧整合來預測結果將進一步推動該地區群體智慧市場的成長。
- 預計未來幾年,無人機領域的投資不斷增加以及國防部門對無人機的採購不斷增加將進一步推動該地區群體智慧市場的成長。
美國群體智慧市場洞察
美國在群體智慧市場佔據主導地位,其應用領域包括國防、醫療保健和金融。美國國防部高級研究計畫局 (DARPA) 支持的計畫正在推動軍事用途自主無人機群的創新。谷歌和亞馬遜等科技公司正在研究以群體為基礎的物流和人工智慧協調。大學和實驗室正專注於分散演算法和即時決策。在政府和私部門投資的推動下,市場前景依然強勁。
歐洲群體智慧市場洞察
歐洲群體智慧市場正在快速成長。這種激增是由人工智慧 (AI) 的進步以及各個領域日益採用自主系統所推動的。德國、英國、法國等在群體智慧技術研究、開發和實施方面處於領先地位的國家,其市場擴張尤為顯著。
英國群體智慧市場洞察
英國正穩步採用群體智能,尤其是在國防和緊急應變系統。研究機構正與政府機構密切合作進行無人機群計畫。金融服務正在探索用於詐欺偵測和交易預測的群體模型。人工智慧研究資金正在幫助推動公共安全和交通優化的發展。隨著認知度和真實世界測試的擴大,市場預計還會成長。
德國群體智慧市場洞察
德國正在將群體智慧應用於智慧工廠、自主物流和汽車測試。其強大的工程基礎和對工業 4.0 的關注正在加速實際應用。西門子和博世等公司正在投資以群體為基礎的機器人技術,以提高工業效率。大學在演算法開發和模擬建模方面發揮關鍵作用。隨著採用率的提高,德國正成為歐洲工業集群技術的領導者。
亞太群體智慧市場洞察
亞太地區群體智慧正在快速發展,以中國、日本和韓國為首。農業、城市交通和災難復原領域的應用日益增加。各國政府正大力投資人工智慧和機器人基礎設施,以促進技術創新。研究機構和產業之間的合作正在推動現實世界的部署。低生產成本和技術友善政策正在支持廣泛的實驗。
印度群體智慧市場洞察
印度的群體智慧市場正在興起,主要用途是交通優化和智慧農業。新創公司正在試驗低成本的蜂群無人機進行監視和運送。 「數位印度」和「智慧城市」等政府計畫正在鼓勵基於人工智慧的創新。挑戰包括資金和熟練人力有限,但勢頭正在增強。學術界和技術界開始探索更深入的研究和試點計畫。
中國群體智慧市場洞察
中國正積極推動群體智慧技術的發展,特別是在國防和大規模監視領域。國家主導的研究正在開發用於戰術協調和人群監控的無人機群。大型科技公司正在將群體演算法整合到倉庫自動化和運輸系統中。中國已經進行了數次世界上規模最大的無人機群實彈展示。在國家人工智慧戰略的支持下,中國正將自己定位為該領域的全球領導者。
群體智慧市場佔有率
群體智慧產業主要由知名公司主導,包括:
- DoBot.cc,
- Sentien Robotics有限責任公司
- 一致的人工智慧,
- ConvergentAI公司
- SSI Schäfer 有限公司
- 瓦盧蒂科,
- Enswarm 有限公司
- Powerblox,
- 大腦分析。 ,
- Mobileye。
- NetBeez。 ,
- 雷松,
- Swarm Systems 有限公司
- Avidbots 公司
- NVIDIA 公司,
- 羅伯特博世有限公司,
- Redtree 機器人公司
- SwarmFarm,
- 大陸集團
- 灰橙色。 ,
- Kim Technologies,
- Lexalytics,
- 洛克希德馬丁公司
- 雷神科技公司
- 諾斯羅普·格魯曼
全球群體智慧市場的最新發展
-
2025 年 3 月,NVIDIA 推出了 Isaac GR00T N1,這是旨在模仿人類認知過程的人形機器人的基礎模型。此型號採用雙系統架構,使機器人能夠自主執行整理等任務。此外,NVIDIA 也發布了 Dynamo 軟體框架以增強 AI 推理效率,並宣布推出基於 Blackwell 架構的 GeForce RTX 50 系列 GPU,旨在加速 AI 和遊戲應用。
- 2024年4月,Mobileye推出了EyeQ6 Lite晶片系統,標誌著高階駕駛輔助系統(ADAS)取得了重大進展。該晶片預計將安裝在4600萬輛汽車上,以增強安全性和便利性。更先進的版本 EyeQ6 High 計劃於 2025 年初發布,延續 Mobileye 在汽車 AI 技術領域的領先地位。
- 2025年1月,大陸集團積極將NVIDIA的DRIVE AGX平台融入其自動駕駛解決方案中。大陸集團與其他全球汽車製造商一起採用了該平台,目標是到 2027 年開發自動駕駛汽車。此次合作彰顯了大陸集團致力於推動自動駕駛汽車技術並符合業界安全和性能標準的承諾。
- 2025年5月,總部位於澳洲的SwarmFarm Robotics一直處於農業自動化領域的前沿。該公司擴大了專為精準農業設計的自主機器人團隊。這些機器人利用群體智慧演算法來優化除草和施肥等任務,提高農業的效率和永續性。他們的系統正被世界各地的農場採用,反映出農業領域自動化趨勢日益增強。
- 2025年4月,英國公司Swarm Systems Limited專門從事自主無人機解決方案。他們推出了配備先進群體智慧功能的新型無人機系列,能夠協調執行基礎設施檢查和環境監測等任務。這些無人機旨在無縫協作,提高各種應用的效率和安全性。
SKU-
Get online access to the report on the World's First Market Intelligence Cloud
- Interactive Data Analysis Dashboard
- Company Analysis Dashboard for high growth potential opportunities
- Research Analyst Access for customization & queries
- Competitor Analysis with Interactive dashboard
- Latest News, Updates & Trend analysis
- Harness the Power of Benchmark Analysis for Comprehensive Competitor Tracking
研究方法
数据收集和基准年分析是使用具有大样本量的数据收集模块完成的。该阶段包括通过各种来源和策略获取市场信息或相关数据。它包括提前检查和规划从过去获得的所有数据。它同样包括检查不同信息源中出现的信息不一致。使用市场统计和连贯模型分析和估计市场数据。此外,市场份额分析和关键趋势分析是市场报告中的主要成功因素。要了解更多信息,请请求分析师致电或下拉您的询问。
DBMR 研究团队使用的关键研究方法是数据三角测量,其中包括数据挖掘、数据变量对市场影响的分析和主要(行业专家)验证。数据模型包括供应商定位网格、市场时间线分析、市场概览和指南、公司定位网格、专利分析、定价分析、公司市场份额分析、测量标准、全球与区域和供应商份额分析。要了解有关研究方法的更多信息,请向我们的行业专家咨询。
可定制
Data Bridge Market Research 是高级形成性研究领域的领导者。我们为向现有和新客户提供符合其目标的数据和分析而感到自豪。报告可定制,包括目标品牌的价格趋势分析、了解其他国家的市场(索取国家列表)、临床试验结果数据、文献综述、翻新市场和产品基础分析。目标竞争对手的市场分析可以从基于技术的分析到市场组合策略进行分析。我们可以按照您所需的格式和数据样式添加您需要的任意数量的竞争对手数据。我们的分析师团队还可以为您提供原始 Excel 文件数据透视表(事实手册)中的数据,或者可以帮助您根据报告中的数据集创建演示文稿。

