西班牙机器学习即服务市场 – 行业趋势和 2029 年预测

请求目录 请求目录 与分析师交谈 与分析师交谈 免费样本报告 免费样本报告 购买前请咨询 提前咨询 立即购买 立即购买

西班牙机器学习即服务市场 – 行业趋势和 2029 年预测

  • ICT
  • Upcoming Report
  • Jun 2022
  • Country Level
  • 350 页面
  • 桌子數: 220
  • 图号: 60

西班牙机器学习即服务市场,按服务(托管服务、专业、专业服务)、业务功能(人力资源、销售和营销、财务和运营)、部署模式(云、本地)、组织规模(大型组织、中小型组织)、应用(药物发现、欺诈检测和风险管理、自然语言处理、营销和广告、安全和监控、图像识别、预测分析、数据挖掘、增强和虚拟现实)、最终用户(银行、金融服务和保险、IT 和电信、研究和学术、政府和公共部门、零售和电子商务、制造业、医疗保健和制药、旅游和物流、能源和公用事业、媒体和娱乐)划分 - 行业趋势和预测到 2029 年

市场分析和规模

机器学习即服务市场中的公司正专注于医疗技术、BFSI和电信等重要行业,以便在冠状病毒爆发后确定稳定的收入来源。然而,技术错误和缺乏具有机器学习经验的专业人员似乎是组织采用机器学习的主要制约因素之一。这也为机器学习即服务平台的实施带来了障碍。此外,由于设备短缺导致数据安全性的缺乏对市场的增长产生了负面影响。因此,机器学习即服务市场的参与者应该与政府和监管组织合作,规范机器学习即服务业务。

Data Bridge Market Research 分析称,机器学习即服务市场价值在 2021 年为 54.5 亿美元,预计到 2029 年将达到 793.4 亿美元,在 2022-2029 年预测期内的复合年增长率为 39.76%。

市场定义

机器学习是一种技术,它使计算机能够在接触不同数据集时学习并改变基本功能。机器学习已成为商业最重要的工具。亚马逊和谷歌等科技巨头正在投入巨资来增加和巩固其客户群。

报告范围和市场细分

报告指标

细节

预测期

2022 至 2029 年

基准年

2021

历史岁月

2020(可定制至 2019 - 2014)

定量单位

收入(单位:十亿美元)、销量(单位:台)、定价(美元)

涵盖的领域

服务(托管服务、专业、专业服务)、业务功能(人力资源、销售和营销、财务和运营)、部署模型(云、本地)、组织规模(大型组织、中小型组织)、应用(药物研发、欺诈检测和风险管理、自然语言处理、营销和广告、安全和监控、图像识别、预测分析、数据挖掘、增强和虚拟现实)、最终用户(银行、金融服务和保险、IT 和电信、研究和学术、政府和公共部门、零售和电子商务、制造业、医疗保健和制药、旅游和物流、能源和公用事业、媒体和娱乐)

涵盖的市场参与者

谷歌(美国)、微软(美国)、IBM(美国)、SAP(德国)、亚马逊网络服务公司(美国)

市场机会

  • 在应用领域中开发选项
  • 医疗健康行业投资不断增加    
  • 物联网平台连通性的提高和数据量的增加

西班牙机器学习即服务 市场动态

本节旨在了解市场驱动因素、优势、机遇、限制和挑战。以下内容将详细讨论所有这些内容:

驱动程序:

  • 技术进步

批准技术领域正在发生快速的进步和创新。许多解决方案供应商在这些领域做了大量工作。例如,Affectiva 最近推出了其情感分析技术,该技术拥有最大的知识库,包含超过 200 万个面部视频,允许其客户以无与伦比的洞察力实现高精度。除此之外,Cognitec System、Emotient、Gesturetek、Saffron 和 Palantir 等小公司正在手势识别、面部识别、心理特征计算和体细胞分析领域取得重大进展。这些发展有望在未来几年推动市场的增长。

  • 数据存储和归档

在深度学习算法中,数据存储和归档包在预测非常复杂问题的解决方案方面起着重要作用。由于深度学习算法程序处理由多层组成的人工神经网络,因此它需要大量数据集来提供结果。深度学习算法程序使用数据存储和归档包来专注于人工神经网络中的复杂功能。

  • 建模与处理

在过去的十年中,机器学习技术已经发展成为从统计学、数学、神经生物学和计算等多个领域发展而来的“算法”,使其具有商业可行性和计算能力。如今,语音识别、欺诈检测和网络开发等许多应用程序都使用了一系列机器学习技术,例如分类、回归和估计,以处理结构化数据集。

  • 基于云和 Web 的应用程序编程接口 (APIS)

在机器学习理论中,数据需求是一个重要的输入参数。银行和金融服务等许多垂直行业需要大量数据来预测市场行为。机器学习算法在从数据存储和归档软件中收集数据时,预测结果的时间非常少。为了克服这个问题,机器学习算法在云和应用程序平台之间创建了一个接口。

机会:

  • 增加对医疗保健行业的投资

在医学领域,大数据被用于计算大量复杂统计数据,从而提供对医疗保健行业应用至关重要的趋势和模式。大数据可帮助医生在问题发生之前预测问题。爱思唯尔健康分析集群通过部署大数据彻底改变了德国的患者护理。该公司与健康经济学家、医生、统计学家、IT 专家和分析师密切合作,以开发有关适当治疗的循证数据。这可以由医疗保健大数据管理,并在人工智能的帮助下由医疗专业人员适当使用。医疗保健大数据的准备大大促进了德国机器学习市场的扩张。

限制/挑战:

缺乏熟练的劳动力投入机器学习即服务市场可能是阻碍全球机器学习即服务市场增长的关键问题。此外,企业希望熟练的服务能够定制特定功能以在其 MLaaS 平台上实施。严格的合规问题是另一个预计会限制目标市场的问题。

这份机器学习即服务 市场报告详细介绍了最新发展、贸易法规、进出口分析、生产分析、价值链优化、市场份额、国内和本地市场参与者的影响,分析了新兴收入来源、市场法规变化、战略市场增长分析、市场规模、类别市场增长、应用领域和主导地位、产品批准、产品发布、地域扩展、市场技术创新等方面的机会。如需了解有关机器学习即服务市场的更多信息, 请联系 Data Bridge Market Research 获取分析师简报,我们的团队将帮助您做出明智的市场决策,实现市场增长。

COVID-19 对机器学习即服务 市场的影响

由于全球实施社交疏离技术,COVID-19 大流行加速了对机器学习的需求。根据集成的程度和性质,应通过每个软件和服务来实现机器学习即服务市场的整合。热摄像机和集群识别系统的使用已在机场、火车站和其他公共场所变得很常见。这使机器学习即服务市场成为关注的焦点,这反过来有望扩大目标市场。此外,在与 COVID 护理中心相关的诊所中使用人工智能来识别密闭区域中人员的存在,对全球机器学习即服务市场产生了积极影响。用于人工智能和分析的算法最近得到了良好的改进,这为在机器学习即服务市场中运营的参与者/供应商创造了动态机会。

西班牙机器学习即服务 市场范围

机器学习即服务 市场根据服务、业务功能部署模型、组织规模、应用和最终用户进行细分。这些细分市场之间的增长将帮助您分析行业中的微薄增长细分市场,并为用户提供有价值的市场概览和市场洞察,帮助他们做出战略决策,确定核心市场应用。

服务

  • 托管服务
  • 专业的
  • 专业服务

 业务功能

  • 人力资源
  • 销售与营销
  • 财务及营运

 部署模型

 组织规模

  • 大型组织
  • 中小型组织

 应用

  • 药物研发
  • 欺诈检测和风险管理
  • 自然语言处理
  • 营销和广告
  • 安全与监控
  • 图像识别
  • 预测分析
  • 数据挖掘
  • 增强现实和虚拟现实

最终用户

  • 银行和金融服务
  • 保险
  • 信息技术和电信
  • 研究与学术
  • 政府和公共部门
  • 零售和电子商务
  • 制造业
  • 医疗保健和制药
  • 旅游与物流
  • 能源和公用事业
  • 媒体和娱乐

竞争格局和 机器学习即服务 市场份额分析

机器学习即服务 市场竞争格局按竞争对手提供详细信息。详细信息包括公司概况、公司财务状况、产生的收入、市场潜力、研发投资、新市场计划、全球影响力、生产基地和设施、生产能力、公司优势和劣势、产品发布、产品宽度和广度、应用主导地位。以上提供的数据点仅与公司对机器学习即服务市场的关注有关。

机器学习即服务市场的一些主要参与者包括:

  • 谷歌(美国)、
  • 微软(美国)、
  • IBM (美国),
  • SAP(德国)、
  • 亚马逊网络服务公司(美国)


SKU-

Get online access to the report on the World's First Market Intelligence Cloud

  • Interactive Data Analysis Dashboard
  • Company Analysis Dashboard for high growth potential opportunities
  • Research Analyst Access for customization & queries
  • Competitor Analysis with Interactive dashboard
  • Latest News, Updates & Trend analysis
  • Harness the Power of Benchmark Analysis for Comprehensive Competitor Tracking
Request for Demo

目录

1 INTRODUCTION

1.1 OBJECTIVES OF THE STUDY

1.2 MARKET DEFINITION

1.3 OVERVIEW OF SPAIN MACHINE LEARNING AS A SERVICE MARKET

1.4 CURRENCY AND PRICING

1.5 LIMITATION

1.6 MARKETS COVERED

2 MARKET SEGMENTATION

2.1 KEY TAKEAWAYS

2.2 ARRIVING AT THE SPAIN MACHINE LEARNING AS A SERVICE MARKET SIZE

2.3 VENDOR POSITIONING GRID

2.4 TECHNOLOGY LIFE LINE CURVE

2.5 MULTIVARIATE MODELLING

2.6 TOP TO BOTTOM ANALYSIS

2.7 STANDARDS OF MEASUREMENT

2.8 VENDOR SHARE ANALYSIS

2.9 DATA POINTS FROM KEY PRIMARY INTERVIEWS

2.1 DATA POINTS FROM KEY SECONDARY DATABASES

2.11 SPAIN MACHINE LEARNING AS A SERVICE MARKET: RESEARCH SNAPSHOT

2.12 ASSUMPTIONS

3 MARKET OVERVIEW

3.1 DRIVERS

3.2 RESTRAINTS

3.3 OPPORTUNITIES

3.4 CHALLENGES

4 EXECUTIVE SUMMARY

5 PREMIUM INSIGHTS

6 PORTER’S FIVE FORCE MODEL

6.1 OVERVIEW

6.2 BARGAINING POWER OF BUYERS

6.3 BARGAINING POWER OF SUPPLIERS

6.4 THREAT OF NEW ENTRANTS

6.5 THREAT OF SUBSTITUTES

6.6 THREAT OF RIVALRY

7 INDUSTRY INSIGHTS

8 SPAIN MACHINE LEARNING AS A SERVICE MARKET, BY COMPONENT

8.1 OVERVIEW

8.2 SOFTWARE

8.3 SERVICE

8.3.1 BY TYPE

8.3.2 PROFESSIONAL SERVICE

8.3.2.1. CONSULTING & TRAINING SERVICES

8.3.2.2. SUPPORT & MAINTENANCE SERVICES

8.3.2.3. IMPLEMENTATION SERVICES

8.3.3 MANAGED SERVICE

9 SPAIN MACHINE LEARNING AS A SERVICE MARKET, BY BUSINESS FUNCTION

9.1 OVERVIEW

9.2 HUMAN RESOURCES

9.3 SALES AND MARKETING

9.4 FINANCE

9.5 OPERATION

10 SPAIN MACHINE LEARNING AS A SERVICE MARKET, BY DEPLOYMENT MODEL

10.1 OVERVIEW

10.2 CLOUD

10.3 ON-PREMISE

11 SPAIN MACHINE LEARNING AS A SERVICE MARKET, BY ORGANIZATION SIZE

11.1 OVERVIEW

11.2 LARGE ORGANIZATION

11.2.1 BY DEPLOYMENT MODEL

11.2.1.1. CLOUD

11.2.1.2. ON-PREMISE

11.3 SMALL & MEDIUM ORGANIZATION

11.3.1 BY DEPLOYMENT MODEL

11.3.1.1. CLOUD

11.3.1.2. ON-PREMISE

12 SPAIN MACHINE LEARNING AS A SERVICE MARKET, BY APPLICATION

12.1 OVERVIEW

12.2 DATA MINING

12.3 NATURAL LANGUAGE PROCESSING

12.4 IMAGE RECOGNITION

12.5 DRUG DISCOVERY

12.6 PREDICTIVE ANALYTICS

12.7 FRAUD DETECTION AND RISK MANAGEMENT

12.8 MARKETING AND ADVERTISING

12.9 AUGMENTED & VIRTUAL REALITY

12.1 SECURITY AND SURVEILLANCE

12.11 OTHERS

13 SPAIN MACHINE LEARNING AS A SERVICE MARKET, BY END-USER

13.1 OVERVIEW

13.2 BANKING, FINANCIAL SERVICES, AND INSURANCE

13.2.1 BY OFFERING

13.2.1.1. SOFTWARE

13.2.1.2. SERVICES

13.3 IT AND TELECOMMUNICATION

13.3.1 BY OFFERING

13.3.1.1. SOFTWARE

13.3.1.2. SERVICES

13.4 RESEARCH AND ACADEMIC

13.4.1 BY OFFERING

13.4.1.1. SOFTWARE

13.4.1.2. SERVICES

13.5 GOVERNMENT AND PUBLIC SECTOR

13.5.1 BY OFFERING

13.5.1.1. SOFTWARE

13.5.1.2. SERVICES

13.6 RETAIL & ECOMMERCE

13.6.1 BY OFFERING

13.6.1.1. SOFTWARE

13.6.1.2. SERVICES

13.7 MANUFACTURING

13.7.1 BY OFFERING

13.7.1.1. SOFTWARE

13.7.1.2. SERVICES

13.8 HEALTHCARE AND PHARMACEUTICALS

13.8.1 BY OFFERING

13.8.1.1. SOFTWARE

13.8.1.2. SERVICES

13.9 TRAVEL & LOGISTICS

13.9.1 BY OFFERING

13.9.1.1. SOFTWARE

13.9.1.2. SERVICES

13.1 ENERGY AND UTILITY

13.10.1 BY OFFERING

13.10.1.1. SOFTWARE

13.10.1.2. SERVICES

13.10.2 BY OFFERING

13.10.2.1. SOFTWARE

13.10.2.2. SERVICES

13.11 MEDIA AND ENTERTAINMENT

13.11.1 BY OFFERING

13.11.1.1. SOFTWARE

13.11.1.2. SERVICES

13.12 ACADEMIA AND RESEARCH

13.12.1 BY OFFERING

13.12.1.1. SOFTWARE

13.12.1.2. SERVICES

13.13 OTHERS

14 SPAIN MACHINE LEARNING AS A SERVICE MARKET, COMPANY LANDSCAPE

14.1 COMPANY SHARE ANALYSIS: SPAIN

14.2 MERGERS & ACQUISITIONS

14.3 NEW PRODUCT DEVELOPMENT & APPROVALS

14.4 EXPANSIONS

14.5 REGULATORY CHANGES

14.6 PARTNERSHIP AND OTHER STRATEGIC DEVELOPMENTS

15 SPAIN MACHINE LEARNING AS A SERVICE MARKET, SWOT & DBMR ANALYSIS

16 SPAIN MACHINE LEARNING AS A SERVICE MARKET, COMPANY PROFILE

16.1 MICROSOFT

16.1.1 COMPANY SNAPSHOT

16.1.2 REVENUE ANALYSIS

16.1.3 GEOGRAPHIC PRESENCE

16.1.4 PRODUCT PORTFOLIO

16.1.5 RECENT DEVELOPMENTS

16.2 AMAZON WEB SERVICES, INC.

16.2.1 COMPANY SNAPSHOT

16.2.2 GEOGRAPHIC PRESENCE

16.2.3 PRODUCT PORTFOLIO

16.2.4 RECENT DEVELOPMENTS

16.3 GOOGLE,LLC

16.3.1 COMPANY SNAPSHOT

16.3.2 GEOGRAPHIC PRESENCE

16.3.3 REVENUE ANALYSIS

16.3.4 PRODUCT PORTFOLIO

16.3.5 RECENT DEVELOPMENTS

16.4 IBM

16.4.1 COMPANY SNAPSHOT

16.4.2 GEOGRAPHIC PRESENCE

16.4.3 REVENUE ANALYSIS

16.4.4 PRODUCT PORTFOLIO

16.4.5 RECENT DEVELOPMENTS

16.5 SAP SE

16.5.1 COMPANY SNAPSHOT

16.5.2 GEOGRAPHIC PRESENCE

16.5.3 PRODUCT PORTFOLIO

16.5.4 RECENT DEVELOPMENTS

16.6 BIGML

16.6.1 COMPANY SNAPSHOT

16.6.2 GEOGRAPHIC PRESENCE

16.6.3 PRODUCT PORTFOLIO

16.6.4 RECENT DEVELOPMENTS

16.7 ISHIR

16.7.1 COMPANY SNAPSHOT

16.7.2 GEOGRAPHIC PRESENCE

16.7.3 PRODUCT PORTFOLIO

16.7.4 RECENT DEVELOPMENTS

16.8 HEWLETT PACKARD ENTERPRISE DEVELOPMENT LP

16.8.1 COMPANY SNAPSHOT

16.8.2 GEOGRAPHIC PRESENCE

16.8.3 PRODUCT PORTFOLIO

16.8.4 RECENT DEVELOPMENTS

16.9 SAS INSTITUTE INC.

16.9.1 COMPANY SNAPSHOT

16.9.2 GEOGRAPHIC PRESENCE

16.9.3 PRODUCT PORTFOLIO

16.9.4 RECENT DEVELOPMENTS

16.1 FICO

16.10.1 COMPANY SNAPSHOT

16.10.2 GEOGRAPHIC PRESENCE

16.10.3 PRODUCT PORTFOLIO

16.10.4 RECENT DEVELOPMENTS

17 QUESTIONNAIRE

18 CONCLUSION

19 RELATED REPORTS

20 ABOUT DATA BRIDGE MARKET RESEARCH

查看详细信息 Right Arrow

研究方法

数据收集和基准年分析是使用具有大样本量的数据收集模块完成的。该阶段包括通过各种来源和策略获取市场信息或相关数据。它包括提前检查和规划从过去获得的所有数据。它同样包括检查不同信息源中出现的信息不一致。使用市场统计和连贯模型分析和估计市场数据。此外,市场份额分析和关键趋势分析是市场报告中的主要成功因素。要了解更多信息,请请求分析师致电或下拉您的询问。

DBMR 研究团队使用的关键研究方法是数据三角测量,其中包括数据挖掘、数据变量对市场影响的分析和主要(行业专家)验证。数据模型包括供应商定位网格、市场时间线分析、市场概览和指南、公司定位网格、专利分析、定价分析、公司市场份额分析、测量标准、全球与区域和供应商份额分析。要了解有关研究方法的更多信息,请向我们的行业专家咨询。

可定制

Data Bridge Market Research 是高级形成性研究领域的领导者。我们为向现有和新客户提供符合其目标的数据和分析而感到自豪。报告可定制,包括目标品牌的价格趋势分析、了解其他国家的市场(索取国家列表)、临床试验结果数据、文献综述、翻新市场和产品基础分析。目标竞争对手的市场分析可以从基于技术的分析到市场组合策略进行分析。我们可以按照您所需的格式和数据样式添加您需要的任意数量的竞争对手数据。我们的分析师团队还可以为您提供原始 Excel 文件数据透视表(事实手册)中的数据,或者可以帮助您根据报告中的数据集创建演示文稿。

Testimonial