Globaler KI-Code-Markt: Analysebericht zu Größe, Marktanteil und Trends – Branchenüberblick und Prognose bis 2032

Inhaltsverzeichnis anfordernInhaltsverzeichnis anfordern Mit Analyst sprechen Mit Analyst sprechen Kostenloser Beispielbericht Kostenloser Beispielbericht Vor dem Kauf anfragen Vorher anfragen Jetzt kaufenJetzt kaufen

Globaler KI-Code-Markt: Analysebericht zu Größe, Marktanteil und Trends – Branchenüberblick und Prognose bis 2032

  • ICT
  • Upcoming Reports
  • Dec 2023
  • Global
  • 350 Seiten
  • Anzahl der Tabellen: 220
  • Anzahl der Abbildungen: 60
  • Author : Megha Gupta

Umgehen Sie die Zollherausforderungen mit agiler Supply-Chain-Beratung

Die Analyse des Supply-Chain-Ökosystems ist jetzt Teil der DBMR-Berichte

Global Ai Code Market

Marktgröße in Milliarden USD

CAGR :  % Diagram

Chart Image USD 5.33 Billion USD 30.38 Billion 2024 2032
Diagramm Prognosezeitraum
2025 –2032
Diagramm Marktgröße (Basisjahr)
USD 5.33 Billion
Diagramm Marktgröße (Prognosejahr)
USD 30.38 Billion
Diagramm CAGR
%
Diagramm Wichtige Marktteilnehmer
  • Codecademy CodiumAI
  • DeepCode
  • Google LLC
  • IBM Corporation
  • Microsoft Corporation

Globale Marktsegmentierung für KI-Code nach Betrieb (Codegenerierung, Codeverbesserung, Sprachübersetzung und Codeüberprüfungen), Anwendung (Datenwissenschaft und -analyse, Spieleentwicklung und -design, Web- und Anwendungsentwicklung, IoT und intelligente Geräte), Vertikal (BFSI, Medien und Unterhaltung, IT und Telekommunikation, Gesundheitswesen und Biowissenschaften, Transport und Logistik sowie Einzelhandel und E-Commerce) – Branchentrends und Prognose bis 2032

AI Code Market z

Marktgröße für KI-Code

  • Der globale Markt für KI-Codes wurde im Jahr 2024 auf 5,33 Milliarden US-Dollar geschätzt  und soll  bis 2032 30,38 Milliarden US-Dollar erreichen , bei einer CAGR von 24,30 % im Prognosezeitraum.
  • Das Marktwachstum wird maßgeblich durch die schnelle Integration künstlicher Intelligenz in die Lebenszyklen der Softwareentwicklung vorangetrieben, die die Automatisierung der Codegenerierung, Fehlererkennung und prädiktiven Codierungs-Workflows ermöglicht.
  • Darüber hinaus führt die steigende Nachfrage nach schnellerer Markteinführung, verbesserter Codequalität und reduzierten Entwicklungskosten dazu, dass KI-gestützte Programmiertools branchenübergreifend zu unverzichtbaren Ressourcen werden. Diese konvergierenden Faktoren beschleunigen die Einführung KI-gestützter Entwicklungsplattformen und fördern damit das Branchenwachstum erheblich.

KI-Code-Marktanalyse

  • KI-Code-Tools, die maschinelles Lernen und natürliche Sprachverarbeitung nutzen, um die Codegenerierung zu unterstützen oder zu automatisieren, werden aufgrund ihrer Fähigkeit, Produktivität, Genauigkeit und Skalierbarkeit zu verbessern, zu kritischen Komponenten moderner Softwareentwicklungsumgebungen in verschiedenen Sektoren.
  • Die steigende Nachfrage nach KI-Programmierlösungen wird vor allem durch den weltweiten Mangel an qualifizierten Entwicklern, die zunehmende Komplexität der Softwarearchitektur und den zunehmenden Druck zur Beschleunigung der Release-Zyklen in wettbewerbsintensiven Märkten angeheizt.
  • Nordamerika dominierte den KI-Code-Markt mit dem größten Umsatzanteil von 41,7 % im Jahr 2024. Er zeichnete sich durch eine starke technologische Infrastruktur, eine frühe Einführung durch Unternehmen und die Präsenz großer KI- und Cloud-Dienstanbieter aus, wobei die USA bei der Weiterentwicklung von KI-gestützten Programmiertools bei Startups und großen Technologieunternehmen wie
  • Der asiatisch-pazifische Raum dürfte im Prognosezeitraum aufgrund expandierender IT-Sektoren, staatlicher Initiativen in der KI-Forschung und des wachsenden Interesses an Low-Code- und No-Code-Entwicklungsplattformen die am schnellsten wachsende Region im KI-Code-Markt sein.
  • Das Segment Codegenerierung dominierte den KI-Codemarkt mit einem Marktanteil von 47,2 % im Jahr 2024, getrieben durch den zunehmenden Einsatz von KI zur Automatisierung sich wiederholender Codierungsaufgaben und zur Steigerung der Entwicklereffizienz sowohl in Unternehmens- als auch in Open-Source-Projekten.

Berichtsumfang und Marktsegmentierung für KI-Code     

Eigenschaften

Wichtige Markteinblicke zu AI Code

Abgedeckte Segmente

  • Nach Vorgang : Codegenerierung, Codeverbesserung, Sprachübersetzung und Codeüberprüfungen
  • Nach Anwendung : Datenwissenschaft und -analyse, Spieleentwicklung und -design, Web- und Anwendungsentwicklung, IoT und Smart Devices
  • Nach Branchen : BFSI, Medien und Unterhaltung, IT und Telekommunikation, Gesundheitswesen und Biowissenschaften, Transport und Logistik sowie Einzelhandel und E-Commerce

Abgedeckte Länder

Nordamerika

  • UNS
  • Kanada
  • Mexiko

Europa

  • Deutschland
  • Frankreich
  • Vereinigtes Königreich
  • Niederlande
  • Schweiz
  • Belgien
  • Russland
  • Italien
  • Spanien
  • Truthahn
  • Restliches Europa

Asien-Pazifik

  • China
  • Japan
  • Indien
  • Südkorea
  • Singapur
  • Malaysia
  • Australien
  • Thailand
  • Indonesien
  • Philippinen
  • Restlicher Asien-Pazifik-Raum

Naher Osten und Afrika

  • Saudi-Arabien
  • Vereinigte Arabische Emirate
  • Südafrika
  • Ägypten
  • Israel
  • Rest des Nahen Ostens und Afrikas

Südamerika

  • Brasilien
  • Argentinien
  • Restliches Südamerika

Wichtige Marktteilnehmer

  • GitHub, Inc. (USA)
  • Amazon Web Services, Inc. (USA)
  • Google LLC (USA)
  • Replit, Inc. (USA)
  • Tabnine Ltd. (Israel)
  • Microsoft Corporation (US)
  • IBM Corporation (USA)
  • JetBrains sro (Tschechische Republik)
  • Salesforce, Inc. (USA)
  • Oracle Corporation (USA)
  • Meta Platforms, Inc. (USA)
  • SAP SE (Deutschland)
  • Tencent Holdings Ltd. (China)
  • Alibaba Group Holding Limited (China)
  • Infosys Limited (Indien)
  • Wipro Limited (Indien)
  • HCL Technologies Limited (Indien)
  • NVIDIA Corporation (USA)
  • Accenture plc (Irland)
  • Cognizant Technology Solutions Corporation (USA)

Marktchancen

  • Die Integration generativer KI in integrierte Entwicklungsumgebungen (IDEs)
  • Zunehmende Anwendung generativer KI in der Codierung in Medien und Unterhaltung

Wertschöpfungsdaten-Infosets

Zusätzlich zu den Einblicken in Marktszenarien wie Marktwert, Wachstumsrate, Segmentierung, geografische Abdeckung und wichtige Akteure enthalten die von Data Bridge Market Research kuratierten Marktberichte auch ausführliche Expertenanalysen, Preisanalysen, Markenanteilsanalysen, Verbraucherumfragen, demografische Analysen, Lieferkettenanalysen, Wertschöpfungskettenanalysen, eine Übersicht über Rohstoffe/Verbrauchsmaterialien, Kriterien für die Lieferantenauswahl, PESTLE-Analysen, Porter-Analysen und regulatorische Rahmenbedingungen.

Markttrends für KI-Code

Verbesserte Entwicklerproduktivität durch KI und natürliche Sprachverarbeitung (NLP)

  • Ein bedeutender und sich beschleunigender Trend auf dem globalen KI-Code-Markt ist die Integration fortschrittlicher Algorithmen für die Verarbeitung natürlicher Sprache (NLP) und maschinelles Lernen in Entwicklertools. So können Benutzer Code mithilfe einfacher, menschlicher Eingabeaufforderungen generieren und ändern. Dieser Wandel revolutioniert die Workflows der Softwareentwicklung, indem er sie intuitiver, effizienter und zugänglicher macht.
  • Beispielsweise ermöglicht GitHub Copilot, basierend auf OpenAIs Codex, Entwicklern, Code-Snippets zu generieren, Funktionen zu vervollständigen und sogar komplette Module basierend auf natürlichen Spracheingaben zu schreiben. Ebenso bieten Tools wie Amazon CodeWhisperer und Tabnine intelligente Code-Vervollständigungen und kontextbezogene Vorschläge, die die Entwicklung beschleunigen.
  • KI-gestützte Programmierassistenten können aus bestehenden Codebasen lernen, Fehler erkennen, Optimierungen vorschlagen und auf individuelle Programmierstile zugeschnittene Reaktionen entwickeln. Diese Tools entwickeln sich im Laufe der Zeit weiter und verbessern ihre Genauigkeit und Kontextrelevanz, je mehr Programmierszenarien sie durchlaufen. Darüber hinaus erhöht ihre Fähigkeit, mit mehreren Programmiersprachen zu arbeiten, ihre Attraktivität für ein vielfältiges Entwicklerpublikum.
  • Die nahtlose Integration von KI-Code-Assistenten in gängige integrierte Entwicklungsumgebungen (IDEs) wie Visual Studio Code, JetBrains und Eclipse erleichtert die Zusammenarbeit in Echtzeit, Codeüberprüfung und Debugging in einer einheitlichen Entwicklungsumgebung.
  • Dieser Trend zu immer intelligenteren, kontextbezogenen und dialogorientierten Programmierplattformen definiert die Entwicklererfahrung neu. Führende Technologieunternehmen wie Google und Meta investieren daher in fortschrittliche KI-Codegenerierungsmodelle, die plattformübergreifende Entwicklung und DevOps-Automatisierung unterstützen.
  • Die Nachfrage nach KI-gestützten Programmiertools, die die Entwicklung rationalisieren, die kognitive Belastung reduzieren und schnelles Prototyping unterstützen, wächst bei Startups, Unternehmen und freiberuflichen Entwicklern rasant, da der Bedarf an agiler und qualitativ hochwertiger Software weiter steigt.

Marktdynamik von KI-Codes

Treiber

Beschleunigte Softwareentwicklung angesichts steigender Nachfrage nach Automatisierung

  • Die zunehmende Komplexität moderner Software, kombiniert mit dem zunehmenden Druck, Produkte schnell und in großem Maßstab bereitzustellen, ist ein wichtiger Treiber für die Einführung von KI-Codegenerierungstools.
  • So führte Microsoft beispielsweise im März 2024 neue Copilot-Integrationen in Azure DevOps und GitHub Enterprise ein, die die CI/CD-Automatisierung verbessern und Echtzeit-Codevorschläge während des gesamten Entwicklungszyklus ermöglichen. Solche Innovationen dürften den KI-Code-Markt im Prognosezeitraum vorantreiben.
  • KI-gestützte Code-Assistenten bieten Vorschläge in Echtzeit, generieren automatisch Boilerplate-Code und erkennen Fehler frühzeitig im Entwicklungsprozess, was zu einer Verkürzung der Entwicklungszeit und weniger Codierungsfehlern führt.
  • Darüber hinaus zwingt der weltweite Mangel an qualifizierten Entwicklern Unternehmen dazu, KI-Tools einzusetzen, die menschliche Fähigkeiten ergänzen und es nicht-technischen Benutzern ermöglichen, über Low-Code/No-Code-Plattformen zur Anwendungsentwicklung beizutragen.
  • Die Fähigkeit dieser Tools, das Onboarding zu beschleunigen, die Zusammenarbeit zu verbessern und die Codequalität zu steigern, findet auch in Branchen wie dem Finanzwesen, dem Gesundheitswesen und dem Einzelhandel breite Akzeptanz. Da Unternehmen ihre Abläufe digitalisieren und neue digitale Dienste schneller entwickeln möchten, werden KI-Codierungsplattformen für Entwicklungsteams immer wichtiger.

Einschränkung/Herausforderung

Verzerrung bei Trainingsdaten und Einhaltung der Softwarelizenzierung

  • Eine der größten Herausforderungen für den KI-Code-Markt besteht darin, dass Codegenerierungstools auf Grundlage der Trainingsdaten unsicheren, fehlerhaften oder verzerrten Code reproduzieren können. Wenn die Trainingsdaten fehlerhaften oder urheberrechtlich geschützten Code enthalten, besteht das Risiko rechtlicher und funktionaler Probleme, die sich aus der Ausgabe ergeben.
  • So haben einige Entwickler beispielsweise Bedenken geäußert, dass KI-generierter Code von Tools wie Copilot versehentlich Ausschnitte aus Open-Source-Projekten unter restriktiven Lizenzen reproduzieren könnte, was zu Bedenken hinsichtlich des geistigen Eigentums bei kommerziellen Anwendungen führen könnte.
  • Um dies zu erreichen, müssen Entwickler strenge Code-Review-Prozesse implementieren und die Einhaltung der Open-Source-Lizenznormen sicherstellen. Unternehmen arbeiten außerdem daran, die Transparenz der Modell-Trainingsdaten zu verbessern und Filtermechanismen zu verfeinern, um rechtliche Risiken zu minimieren.
  • Darüber hinaus fehlt KI-Programmierwerkzeugen oft das vollständige Kontextverständnis komplexer Anwendungen, was zu suboptimalen oder unsicheren Vorschlägen führen kann, insbesondere bei unternehmenskritischen Systemen. Kontinuierliche Modellverfeinerung und menschliche Überwachung sind notwendig, um die Code-Zuverlässigkeit zu gewährleisten.
  • Trotz der wachsenden Vorteile bleiben anfängliche Skepsis der Entwickler, potenzielle rechtliche Risiken und die Notwendigkeit der Erklärbarkeit von KI-Entscheidungen Hürden für die Einführung. Die Bewältigung dieser Herausforderungen durch bessere Lizenztransparenz, verbesserte Modellleistung und die Schulung von Entwicklern wird für ein langfristiges Marktwachstum von entscheidender Bedeutung sein.

Marktumfang für KI-Code

Der Markt ist nach Betrieb, Anwendung und Branche segmentiert.

  • Nach Vorgang

Der KI-Code-Markt ist in Codegenerierung, Codeverbesserung, Sprachübersetzung und Codeüberprüfungen unterteilt. Das Segment Codegenerierung dominierte den Markt mit dem größten Umsatzanteil von 47,2 % im Jahr 2024. Dies ist auf die steigende Nachfrage nach automatisierten Codierungslösungen zurückzuführen, die Entwicklungszyklen beschleunigen und die Belastung der Entwickler reduzieren. Tools, die KI zur Codegenerierung nutzen, wie GitHub Copilot und Amazon CodeWhisperer, werden von Unternehmen und Freiberuflern häufig für Rapid Prototyping, Boilerplate-Erstellung und mehrsprachige Codeausgabe eingesetzt.

Im Bereich Code-Verbesserung wird von 2025 bis 2032 voraussichtlich die höchste jährliche Wachstumsrate verzeichnet, was auf die zunehmende Bedeutung von Code-Qualität, Fehlererkennung und Leistungsoptimierung zurückzuführen ist. KI-gestützte Tools in diesem Segment unterstützen Refactoring, Sicherheitspatches und die Verbesserung der Code-Lesbarkeit und sind daher unverzichtbar für DevOps-Pipelines und umfangreiche Software-Wartungs-Workflows.

  • Nach Anwendung

Der Markt für KI-Code ist nach Anwendung in die Bereiche Data Science und Analytics, Spieleentwicklung und -design, Web- und Anwendungsentwicklung sowie IoT und Smart Devices segmentiert. Das Segment Web- und Anwendungsentwicklung hatte 2024 den größten Umsatzanteil, unterstützt durch die weit verbreitete Einführung KI-gestützter Entwicklungsumgebungen bei Start-ups, KMU und großen Technologieunternehmen. Diese Tools optimieren die Frontend- und Backend-Entwicklung, erleichtern die API-Integration und beschleunigen die Full-Stack-Bereitstellung, insbesondere in agilen und Low-Code/No-Code-Entwicklungsmodellen.

Der Bereich Data Science und Analytics wird im Prognosezeitraum voraussichtlich die höchste Wachstumsrate verzeichnen. Die zunehmende Komplexität von Datenmodellen und der Mangel an qualifizierten Dateningenieuren fördern die Einführung von KI-Tools, die automatisch Skripte generieren, Datenpipelines optimieren und explorative Datenanalysen automatisieren können.

  • Nach Vertikal

Der Markt für KI-Code ist vertikal in die Bereiche BFSI, Medien und Unterhaltung, IT und Telekommunikation, Gesundheitswesen und Biowissenschaften, Transport und Logistik sowie Einzelhandel und E-Commerce unterteilt. Das Segment IT und Telekommunikation dominierte den Markt mit dem größten Umsatzanteil im Jahr 2024 aufgrund der frühzeitigen Einführung von KI-Entwicklungstools und der Nachfrage nach skalierbaren, automatisierten Codierungsumgebungen zur Unterstützung vielfältiger Anwendungsanforderungen wie Netzwerkmanagement, Cybersicherheit und Cloud-Diensten.

Der Bereich Gesundheitswesen und Biowissenschaften wird voraussichtlich zwischen 2025 und 2032 die höchste durchschnittliche jährliche Wachstumsrate (CAGR) aufweisen. Grund hierfür ist der Bedarf an präzisen, gesetzeskonformen und sicheren Kodierlösungen in Bereichen wie medizinischer Software, Diagnosetools und Patientendatenmanagementsystemen. KI-basierte Kodiertools werden zunehmend eingesetzt, um Genauigkeit zu gewährleisten, Entwicklungszeiten zu verkürzen und Innovationen im Bereich Gesundheitstechnologieplattformen zu unterstützen.

Regionale Analyse des KI-Code-Marktes

  • Nordamerika dominierte den KI-Code-Markt mit dem größten Umsatzanteil von 41,7 % im Jahr 2024. Er zeichnete sich durch eine starke technologische Infrastruktur, eine frühe Einführung durch Unternehmen und die Präsenz großer KI- und Cloud-Dienstanbieter aus, wobei die USA bei der Weiterentwicklung von KI-gestützten Programmiertools bei Startups und großen Technologieunternehmen wie
  • Entwickler und Unternehmen in der Region schätzen die Produktivitätssteigerungen, Automatisierungsmöglichkeiten und erweiterte Code-Intelligenz, die KI-gestützte Codierungstools bieten, die oft in bestehende Entwicklungsumgebungen und DevOps-Workflows integriert sind.
  • Diese breite Akzeptanz wird durch robuste Investitionen in Forschung und Entwicklung, ein ausgereiftes Startup-Ökosystem und die wachsende Nachfrage nach schnelleren Software-Lieferzyklen weiter unterstützt. KI-gestützte Codierungsplattformen etablieren sich branchenübergreifend als wichtige Werkzeuge für die moderne Softwareentwicklung.

Einblicke in den US-KI-Code-Markt

Der US-amerikanische KI-Code-Markt erzielte 2024 mit 79,5 % den größten Umsatzanteil innerhalb Nordamerikas, angetrieben durch die weit verbreitete digitale Transformation und die frühzeitige Einführung von KI-Entwicklungstools in allen Branchen. Unternehmen integrieren KI schnell in Softwareentwicklungs-Workflows, um die Produktivität zu steigern, technische Schulden zu reduzieren und die Bereitstellung zu beschleunigen. Der Aufstieg generativer KI-Plattformen wie GitHub Copilot, Amazon CodeWhisperer und Googles Gemini hat den Mainstream-Einsatz von KI-Code-Assistenten weiter vorangetrieben. Darüber hinaus profitieren die USA von starker Risikokapitalaktivität, Entwickler-Communitys und der Unternehmensnachfrage nach skalierbaren, sicheren KI-gestützten Entwicklungsumgebungen.

Einblicke in den europäischen KI-Code-Markt

Der europäische Markt für KI-Codes wird im Prognosezeitraum voraussichtlich mit einer deutlichen jährlichen Wachstumsrate wachsen. Dies ist vor allem auf die zunehmende Digitalisierung öffentlicher Dienste und Industriezweige sowie einen starken regulatorischen Fokus auf Transparenz und Ethik im KI-Bereich zurückzuführen. Europäische Unternehmen setzen zunehmend KI-gestützte Codierungstools ein, um Effizienz- und Compliance-Standards zu erfüllen. Die aktive Teilnahme der Region an Open-Source-Communities sowie Investitionen in souveräne KI-Infrastrukturen treiben das Marktwachstum weiter voran. Die Digitalstrategie der EU fördert die KI-Integration in Sektoren wie Fintech, Fertigung und Bildung und steigert so die Nachfrage nach robusten KI-Code-Lösungen.

Einblicke in den britischen KI-Code-Markt

Der britische KI-Code-Markt wird im Prognosezeitraum voraussichtlich mit einer bemerkenswerten jährlichen Wachstumsrate wachsen, angetrieben durch steigende Investitionen in die KI-Forschung und die schnelle digitale Transformation von Unternehmen. Startups und Unternehmen nutzen KI-gestützte Programmiertools, um Entwicklungsteams zu vergrößern und Software-Lieferzeiten zu verbessern. Die nationale KI-Strategie der Regierung und ein etablierter Fintech-Sektor unterstützen den Markt zusätzlich. Darüber hinaus geht die zunehmende Betonung ethischer KI und sicherer Softwarepraktiken mit der Einführung intelligenter Programmiertools einher, die die Transparenz erhöhen und Programmierfehler reduzieren können.

Markteinblicke zu KI-Codes in Deutschland

Der deutsche Markt für KI-Code wird im Prognosezeitraum voraussichtlich mit einer beträchtlichen jährlichen Wachstumsrate wachsen, unterstützt durch die starke Nachfrage nach industrieller Automatisierung, digitale Innovationsinitiativen und hochqualifizierte Softwareentwickler. Deutschlands robuste Infrastruktur und der Fokus auf Datensicherheit haben die Integration von KI in die Softwareentwicklung vorangetrieben, insbesondere in den Bereichen Automobil, Industrie und Gesundheitswesen. Die Präferenz für effiziente, überprüfbare und datenschutzkonforme KI-Codierungstools prägt die Landschaft. Die Akzeptanz wird auch durch die Zusammenarbeit zwischen Forschungseinrichtungen und Technologieanbietern gefördert.

Einblicke in den KI-Code-Markt im asiatisch-pazifischen Raum

Der Markt für KI-Code im asiatisch-pazifischen Raum wird im Prognosezeitraum von 2025 bis 2032 voraussichtlich mit einer durchschnittlichen jährlichen Wachstumsrate von 23,8 % wachsen. Dies ist auf die wachsende Zahl von Entwicklern, Initiativen zur digitalen Weiterbildung und die Modernisierung der Unternehmens-IT in Ländern wie China, Indien und Japan zurückzuführen. Die Regierungen der Region investieren massiv in KI-Forschung und -Ausbildung und fördern so ein starkes Ökosystem für KI-gestützte Entwicklung. Das schnelle Wirtschaftswachstum der Region und die steigende Nachfrage nach lokalisierten KI-Anwendungen beschleunigen die Einführung von KI-Codierungstools in Branchen wie E-Commerce, mobilen Apps und intelligenter Fertigung.

Markteinblick in den japanischen KI-Code

Der japanische KI-Code-Markt gewinnt aufgrund der fortschrittlichen Technologielandschaft des Landes, der Automatisierungsprioritäten und des starken Fokus auf Präzision und Qualität in der Softwareentwicklung an Dynamik. KI-Code-Tools werden eingesetzt, um die Produktivität in Unternehmen mit Altsystemen zu steigern und Innovationen in den Bereichen Robotik, IoT und Fintech zu unterstützen. Die Integration von KI in bestehende Engineering-Workflows gilt als strategischer Wegbereiter, insbesondere angesichts der alternden Belegschaft und des Bedarfs an effizienter digitaler Infrastruktur in Japan.

Markteinblick in den KI-Code in Indien

Der indische KI-Code-Markt erzielte 2024 den größten Umsatzanteil im asiatisch-pazifischen Raum. Dies ist auf die wachsende IT-Dienstleistungsbranche des Landes, das dynamische Startup-Ökosystem und den starken Fokus auf die branchenübergreifende Einführung von KI zurückzuführen. Indien erlebt eine rasante Verbreitung von KI-Entwicklungsplattformen in den Bereichen Bildung, Fintech und Unternehmenstechnologie. Inländische und internationale Unternehmen investieren in Tools zur Automatisierung der Codegenerierung und -prüfung. Regierungsprogramme wie Digital India und Skill India unterstützen zudem die Personalentwicklung und verbessern den Zugang zu KI-basierten Programmiertools, was zu einem nachhaltigen Marktwachstum führt.

Marktanteil von KI-Code

Die KI-Code-Branche wird hauptsächlich von etablierten Unternehmen angeführt, darunter:

  • GitHub, Inc. (USA)
  • Amazon Web Services, Inc. (USA)
  • Google LLC (USA)
  • Replit, Inc. (USA)
  • Tabnine Ltd. (Israel)
  • Microsoft Corporation (US)
  • IBM Corporation (USA)
  • JetBrains sro (Tschechische Republik)
  • Salesforce, Inc. (USA)
  • Oracle Corporation (USA)
  • Meta Platforms, Inc. (USA)
  • SAP SE (Deutschland)
  • Tencent Holdings Ltd. (China)
  • Alibaba Group Holding Limited (China)
  • Infosys Limited (Indien)
  • Wipro Limited (Indien)
  • HCL Technologies Limited (Indien)
  • NVIDIA Corporation (USA)
  • Accenture plc (Irland)
  • Cognizant Technology Solutions Corporation (USA)

Was sind die jüngsten Entwicklungen auf dem globalen KI-Code-Markt?

  • Im April 2023 veröffentlichte GitHub, eine Tochtergesellschaft von Microsoft, die öffentliche Betaversion von GitHub Copilot X, einer erweiterten Version seines KI-gestützten Code-Assistenten. Copilot X bietet Funktionen wie sprachbasiertes Programmieren über natürliche Spracheingabe, Code-Erklärungen in Echtzeit und kontextsensitive Pull-Request-Antworten. Diese Entwicklung spiegelt GitHubs Engagement wider, die Softwareentwicklung zu transformieren, indem generative KI-Tools direkt in die Arbeitsabläufe der Entwickler integriert werden, um so die Effizienz und die Zusammenarbeit zwischen den Teams zu verbessern.
  • Im März 2023 kündigte Amazon Web Services (AWS) die allgemeine Verfügbarkeit von Amazon CodeWhisperer an, einem KI-Programmierbegleiter, der in IDEs wie Visual Studio Code und JetBrains integriert ist. CodeWhisperer wurde mit Milliarden von Codezeilen trainiert und ermöglicht Entwicklern, Codevorschläge in Echtzeit für mehrere Programmiersprachen zu generieren. Dies trägt dazu bei, Fehler zu reduzieren und die Entwicklung zu beschleunigen. AWS positionierte diese Einführung als Teil seiner umfassenderen Strategie zur Beschleunigung der Cloud-nativen und KI-gesteuerten Softwareentwicklung.
  • Im März 2023 führte Google Cloud Codey ein, ein Modell zur Codegenerierung und -vervollständigung auf seiner Vertex-KI-Plattform. Codey nutzt Googles PaLM 2-Sprachmodell, um hochwertige Codevervollständigungen, Erklärungen und chatbasierte Entwicklungsunterstützung zu bieten. Codey richtet sich an Unternehmensentwickler und unterstützt die Anwendungsmodernisierung, die Integration mit Google Cloud-Diensten und die KI-gestützte Fehlerbehebung. Dies unterstreicht Googles Fokus auf KI-gestützte Produktivität für professionelle Entwicklungsumgebungen.
  • Im Februar 2023 stellte Replit, eine kollaborative Programmierplattform, Ghostwriter Chat vor, ein Konversations-KI-Tool, das die durchgängige Softwareentwicklung in seiner browserbasierten Umgebung unterstützt. Ghostwriter Chat ermöglicht Entwicklern, Echtzeithilfe zu erhalten, Code zu generieren und Programme in natürlicher Sprache zu debuggen. Diese Einführung unterstreicht Replits Mission, den Zugang zur Softwareentwicklung durch KI zu demokratisieren, insbesondere für Lernende und Soloentwickler.
  • Im Januar 2023 veröffentlichte Tabnine, ein KI-Programmierassistent, der für datenschutzorientierte Implementierungen bekannt ist, Tabnine Pro Teams, das für Programmierumgebungen im Enterprise-Bereich entwickelt wurde. Diese Version unterstützt selbst gehostete Modelle, Compliance-Kontrollen und Code-Lernen auf Teamebene und eignet sich daher für Unternehmen, denen Datenvertraulichkeit und kollaborative KI-gestützte Entwicklung wichtig sind. Die Veröffentlichung unterstreicht die steigende Nachfrage nach anpassbaren, sicheren KI-Tools, die auf die spezifischen organisatorischen Anforderungen in Softwareentwicklungs-Workflows zugeschnitten sind.


SKU-

Erhalten Sie Online-Zugriff auf den Bericht zur weltweit ersten Market Intelligence Cloud

  • Interaktives Datenanalyse-Dashboard
  • Unternehmensanalyse-Dashboard für Chancen mit hohem Wachstumspotenzial
  • Zugriff für Research-Analysten für Anpassungen und Abfragen
  • Konkurrenzanalyse mit interaktivem Dashboard
  • Aktuelle Nachrichten, Updates und Trendanalyse
  • Nutzen Sie die Leistungsfähigkeit der Benchmark-Analyse für eine umfassende Konkurrenzverfolgung
Demo anfordern

Forschungsmethodik

Die Datenerfassung und Basisjahresanalyse werden mithilfe von Datenerfassungsmodulen mit großen Stichprobengrößen durchgeführt. Die Phase umfasst das Erhalten von Marktinformationen oder verwandten Daten aus verschiedenen Quellen und Strategien. Sie umfasst die Prüfung und Planung aller aus der Vergangenheit im Voraus erfassten Daten. Sie umfasst auch die Prüfung von Informationsinkonsistenzen, die in verschiedenen Informationsquellen auftreten. Die Marktdaten werden mithilfe von marktstatistischen und kohärenten Modellen analysiert und geschätzt. Darüber hinaus sind Marktanteilsanalyse und Schlüsseltrendanalyse die wichtigsten Erfolgsfaktoren im Marktbericht. Um mehr zu erfahren, fordern Sie bitte einen Analystenanruf an oder geben Sie Ihre Anfrage ein.

Die wichtigste Forschungsmethodik, die vom DBMR-Forschungsteam verwendet wird, ist die Datentriangulation, die Data Mining, die Analyse der Auswirkungen von Datenvariablen auf den Markt und die primäre (Branchenexperten-)Validierung umfasst. Zu den Datenmodellen gehören ein Lieferantenpositionierungsraster, eine Marktzeitlinienanalyse, ein Marktüberblick und -leitfaden, ein Firmenpositionierungsraster, eine Patentanalyse, eine Preisanalyse, eine Firmenmarktanteilsanalyse, Messstandards, eine globale versus eine regionale und Lieferantenanteilsanalyse. Um mehr über die Forschungsmethodik zu erfahren, senden Sie eine Anfrage an unsere Branchenexperten.

Anpassung möglich

Data Bridge Market Research ist ein führendes Unternehmen in der fortgeschrittenen formativen Forschung. Wir sind stolz darauf, unseren bestehenden und neuen Kunden Daten und Analysen zu bieten, die zu ihren Zielen passen. Der Bericht kann angepasst werden, um Preistrendanalysen von Zielmarken, Marktverständnis für zusätzliche Länder (fordern Sie die Länderliste an), Daten zu klinischen Studienergebnissen, Literaturübersicht, Analysen des Marktes für aufgearbeitete Produkte und Produktbasis einzuschließen. Marktanalysen von Zielkonkurrenten können von technologiebasierten Analysen bis hin zu Marktportfoliostrategien analysiert werden. Wir können so viele Wettbewerber hinzufügen, wie Sie Daten in dem von Ihnen gewünschten Format und Datenstil benötigen. Unser Analystenteam kann Ihnen auch Daten in groben Excel-Rohdateien und Pivot-Tabellen (Fact Book) bereitstellen oder Sie bei der Erstellung von Präsentationen aus den im Bericht verfügbaren Datensätzen unterstützen.

Häufig gestellte Fragen

Der Markt ist basierend auf Globale Marktsegmentierung für KI-Code nach Betrieb (Codegenerierung, Codeverbesserung, Sprachübersetzung und Codeüberprüfungen), Anwendung (Datenwissenschaft und -analyse, Spieleentwicklung und -design, Web- und Anwendungsentwicklung, IoT und intelligente Geräte), Vertikal (BFSI, Medien und Unterhaltung, IT und Telekommunikation, Gesundheitswesen und Biowissenschaften, Transport und Logistik sowie Einzelhandel und E-Commerce) – Branchentrends und Prognose bis 2032 segmentiert.
Die Größe des Globaler KI-Code-Markt wurde im Jahr 2024 auf 5.33 USD Billion USD geschätzt.
Der Globaler KI-Code-Markt wird voraussichtlich mit einer CAGR von 24.3% im Prognosezeitraum 2025 bis 2032 wachsen.
Die Hauptakteure auf dem Markt sind Codecademy CodiumAI , DeepCode , Google LLC , IBM Corporation , Microsoft Corporation , NVIDIA Corporation , OpenAI , Tabnine Codota .
Testimonial