Global Artificial Intelligence In Food Beverages Market
Marktgröße in Milliarden USD
CAGR :
%
USD
8.90 Billion
USD
87.71 Billion
2024
2032
| 2025 –2032 | |
| USD 8.90 Billion | |
| USD 87.71 Billion | |
|
|
|
|
Nach Unternehmensgröße (kleine, mittlere und große Unternehmen), Endverbraucher (Lebensmittelverarbeitung, Lebensmittelhandel, Hotel- und Getränkeindustrie), Anwendung (Lebensmittelsortierung, Qualitätskontrolle, Kundenbindung, Produktion und Verpackung, Wartung und andere) und Region – Branchentrends und Prognose bis 2032
Künstliche Intelligenz im F&B-Markt
- Der globale Markt für künstliche Intelligenz in der Lebensmittel- und Getränkeindustrie hatte im Jahr 2024 ein Volumen von 8,9 Milliarden US-Dollar und dürfte bis 2032 einen Wert von 87,5 Milliarden US-Dollar erreichen , was einer durchschnittlichen jährlichen Wachstumsrate (CAGR) von 38,6 % im Prognosezeitraum entspricht.
- Dieses Wachstum wird durch verbesserte Lebensmittelsicherheit und Qualitätskontrolle vorangetrieben.
Künstliche Intelligenz in der F&B-Marktanalyse
- KI-gesteuerte Automatisierung und Robotik optimieren die Prozesse der Lebensmittelproduktion, -verpackung und -inventur und reduzieren so Abfall und Arbeitskosten.
- Computer Vision und maschinelles Lernen werden eingesetzt, um Verunreinigungen zu erkennen und die Qualität in Echtzeit zu überwachen.
- Nordamerika verfügt über einen erheblichen Marktanteil, da dort KI-gesteuerte Automatisierung und Robotik die Lebensmittelproduktion rationalisieren.
- In Nordamerika wird voraussichtlich das schnellste Wachstum verzeichnet. Grund dafür ist die Tatsache, dass KI Unternehmen dabei hilft, das Verbraucherverhalten zu analysieren und so Produktangebote und Marketingstrategien zu personalisieren.
- Prognosen zufolge wird das mittlere Segment im Jahr 2025 einen signifikanten Marktanteil von etwa 34,1 % erreichen, angetrieben durch das personalisierte Kundenerlebnis.
Berichtsumfang und künstliche Intelligenz in der F&B-Marktsegmentierung
|
Eigenschaften |
Künstliche Intelligenz in der Lebensmittel- und Getränkeindustrie – wichtige Markteinblicke |
|
Abgedeckte Segmente |
|
|
Abgedeckte Länder |
Nordamerika
Europa
Nordamerika
Naher Osten und Afrika
Südamerika
|
|
Wichtige Marktteilnehmer |
|
|
Marktchancen |
|
|
Wertschöpfungsdaten-Infosets |
Zusätzlich zu den Einblicken in Marktszenarien wie Marktwert, Wachstumsrate, Segmentierung, geografische Abdeckung und wichtige Akteure enthalten die von Data Bridge Market Research kuratierten Marktberichte auch Import-Export-Analysen, eine Übersicht über die Produktionskapazität, eine Analyse des Produktionsverbrauchs, eine Preistrendanalyse, ein Szenario des Klimawandels, eine Lieferkettenanalyse, eine Wertschöpfungskettenanalyse, eine Übersicht über Rohstoffe/Verbrauchsmaterialien, Kriterien für die Lieferantenauswahl, eine PESTLE-Analyse, eine Porter-Analyse und regulatorische Rahmenbedingungen. |
Künstliche Intelligenz in der Lebensmittel- und Getränkeindustrie – Markttrends
„Intelligente Automatisierung und operative Intelligenz“
- KI wird zunehmend in Lebensmittelverarbeitungs- und Qualitätssicherungssysteme integriert, um die Echtzeitüberwachung zu verbessern, menschliche Fehler zu reduzieren und die Konsistenz über alle Produktionslinien hinweg zu gewährleisten. Vision-basierte KI-Inspektionswerkzeuge identifizieren Mängel in Lebensmitteln in großem Umfang.
- Cloud-integrierte KI-Plattformen ermöglichen skalierbare Rezeptoptimierung, Produktionsplanung und vorausschauende Wartung in Lebensmittelproduktionsanlagen. Dies trägt zur Senkung der Betriebskosten bei und steigert gleichzeitig den Ertrag.
- Im Jahr 2024 ging Nestlé eine Partnerschaft mit Microsoft Azure ein, um KI für Produktionsprognosen und Fabrikleistungsoptimierung in europäischen und asiatischen Werken einzusetzen.
- KI-gesteuerte Robotik wird in die Verpackungs- und Lagerverwaltung integriert. Im Jahr 2023 implementierte Coca-Cola KI-gesteuerte Roboterarme für die automatisierte Sortierung und Qualitätskontrolle in seinen nordamerikanischen Abfüllanlagen.
Künstliche Intelligenz in der Marktdynamik der Lebensmittel- und Getränkeindustrie
Treiber
„Einhaltung gesetzlicher Vorschriften und Sicherheitsüberwachung“
- Zunehmende Vorschriften zur Lebensmittelsicherheit und strengere internationale Qualitätsstandards veranlassen Unternehmen dazu, KI für die durchgängige Überwachung und Rückverfolgbarkeit der Einhaltung von Vorschriften einzusetzen.
- KI-gestützte Plattformen unterstützen die Gefahrenerkennung, die Allergenverfolgung und die Haltbarkeitsvorhersage – entscheidend für die Gewährleistung der Sicherheit und den Aufbau des Verbrauchervertrauens.
- Beispielsweise führte Tyson Foods im April 2021 ein KI-basiertes Rückverfolgbarkeitssystem mit IBM Watson ein, um Verunreinigungen aufzuspüren und die Einhaltung der Lebensmittelsicherheit in der gesamten Lieferkette zu gewährleisten.
- KI unterstützt die Digitalisierung von Compliance-Workflows und automatisiert die Dokumentation gemäß HACCP-, ISO 22000- und FSMA-Standards. Dies reduziert manuelle Berichterstattung und fehleranfällige Aufzeichnungen.
Gelegenheit
„Integration mit Predictive Analytics und Consumer Insights“
- Die rasante Digitalisierung und der Omnichannel-Handel liefern umfangreiche Datensätze zu Verbraucherpräferenzen. Mithilfe künstlicher Intelligenz werden diese Daten für Trendprognosen und die Entwicklung personalisierter Produkte ausgewertet.
- Algorithmen für maschinelles Lernen erkennen neu entstehende Ernährungsmuster und optimieren die Auswahl der Zutaten für neue Produktformulierungen, wodurch die Markteinführungszeit verkürzt wird.
- So führte PepsiCo beispielsweise im Jahr 2025 eine KI-Plattform ein, die globale Verbrauchsdaten analysiert, um gemeinsam Geschmacksprofile für regionale Märkte zu erstellen und so die Kundenzufriedenheit und Markenrelevanz zu verbessern.
- Restaurants und Essenslieferdienste nutzen KI, um Menüs dynamisch anzupassen, Bestellmengen vorherzusagen und Lebensmittelabfälle zu minimieren. Im Jahr 2024 integrierte Domino's KI-basierte Nachfrageprognosen in seine Bestandssysteme in ganz Europa.
Einschränkung/Herausforderung
„Hohe Implementierungskosten und Datensensibilität“
- Der Einsatz von KI in der Lebensmittel- und Getränkeherstellung erfordert erhebliche Investitionen in die Infrastruktur, darunter Hochleistungsrechnen, Data Warehousing und Fachkräfte.
- Viele KMU sind mit Budgetbeschränkungen konfrontiert und haben keinen Zugriff auf KI-Tools auf Unternehmensniveau, was die Einführung einschränkt.
- So ergab beispielsweise eine Umfrage der International Food and Beverage Technology Association aus dem Jahr 2023, dass 63 % der kleinen Hersteller die Kosten als Haupthindernis für die Implementierung von KI angaben.
- Aufgrund der Sensibilität der in der KI-Modellierung verwendeten Gesundheits- und Präferenzdaten von Verbrauchern nehmen die Bedenken hinsichtlich Datenschutz und Datensicherheit zu. Die Einhaltung der DSGVO und des CCPA erhöht die Komplexität und die Kosten zusätzlich.
Künstliche Intelligenz im F&B-Marktumfang
Der Markt ist nach Unternehmensgröße, Endbenutzer und Anwendung segmentiert.
|
Segmentierung |
Untersegmentierung |
|
Nach Endbenutzer |
|
|
Nach Anwendung |
|
Im Jahr 2025 wird das mittlere Segment voraussichtlich das Komponentensegment dominieren.
Das mittlere Segment wird voraussichtlich im Jahr 2025 einen Marktanteil von etwa 34,1 % halten, angetrieben durch Nachfrageprognosen und Lieferkettenoptimierung.
Das Segment Lebensmittelverarbeitung wird im Prognosezeitraum voraussichtlich den größten Anteil am Anwendungsmarkt einnehmen
. Im Jahr 2025 wird das Segment Lebensmittelverarbeitung voraussichtlich einen Marktanteil von 45,1 % erreichen, was auf eine verbesserte Lebensmittelsicherheit und Qualitätskontrolle zurückzuführen ist.
Künstliche Intelligenz in der regionalen Analyse des F&B-Marktes
„Nordamerika hält den größten Anteil am Markt für künstliche Intelligenz im F&B-Bereich“
- Nordamerika dominiert den Markt aufgrund der KI in den Bereichen intelligente Landwirtschaft und Ernteprognose.
- Die USA halten einen erheblichen Anteil, angetrieben durch das Wachstum im E-Commerce und bei Cloud Kitchens.
- Der Globus profitiert von Initiativen zur Abfallreduzierung und Nachhaltigkeit.
„Der asiatisch-pazifische Raum wird voraussichtlich die höchste durchschnittliche jährliche Wachstumsrate im Bereich der künstlichen Intelligenz im Lebensmittel- und Getränkemarkt verzeichnen .“
- Das Wachstum im asiatisch-pazifischen Raum wird durch KI-gestützte Empfehlungsmaschinen, intelligente Bestandsführung und Lieferoptimierung vorangetrieben, was die Expansion im Online-Lebensmittelbereich vorantreibt.
- China wird voraussichtlich die höchste durchschnittliche jährliche Wachstumsrate aufweisen, da die Upstream-Integration von KI für die Beschaffung von Zutaten und die Vorhersage von Ernteerträgen Qualität und Nachhaltigkeit verbessert.
- KI hilft dabei, die Haltbarkeit zu überwachen, die Nachfrage vorherzusagen und Lebensmittelabfälle zu reduzieren, und steht damit im Einklang mit globalen Nachhaltigkeitszielen.
Künstliche Intelligenz im F&B-Marktanteil
Die Wettbewerbslandschaft des Marktes liefert detaillierte Informationen zu den einzelnen Wettbewerbern. Zu den Details gehören Unternehmensübersicht, Unternehmensfinanzen, Umsatz, Marktpotenzial, Investitionen in Forschung und Entwicklung, neue Marktinitiativen, globale Präsenz, Produktionsstandorte und -anlagen, Produktionskapazitäten, Stärken und Schwächen des Unternehmens, Produkteinführung, Produktbreite und -umfang sowie Anwendungsdominanz. Die oben genannten Datenpunkte beziehen sich ausschließlich auf die Marktausrichtung der Unternehmen.
Die wichtigsten Marktführer auf dem Markt sind:
- GREEFA,
- TOMRA System ASA,
- Honeywell International Inc.,
- Martec of Whitell Ltd.
- Sesotec GmbH,
- Key Technology Inc.,
- Raytec Vision SpA,
- Rockwell Automation,
- ABB Ltd.,
- Foodable Network, LLC.
- Startup-Gründer,
- Kompakte Sortieranlage,
- Agco Corporation,
- National Recovery Technologies, LLC,
- Max-Ai,
- Bühler AG |,
- QualySense AG,
- Bratney-Unternehmen,
- BoMill AB,
- Milltec Clarfai, Inc.,
- BBC-Technologien
- INTELLIGENTX Brewing Co.
Neueste Entwicklungen im globalen Markt für künstliche Intelligenz im Lebensmittel- und Getränkebereich
- Im Mai 2025 gründete Cargill in Bengaluru, Indien, ein KI-Kompetenzzentrum, um Forschung und Entwicklung voranzutreiben und das Kundenerlebnis zu verbessern. Ziel dieser Initiative ist es, Cargill an der Spitze des technologischen Fortschritts in der Lebensmittelindustrie zu halten.
- Im März 2025 ging Yum Brands, die Muttergesellschaft von Taco Bell, Pizza Hut und KFC, eine Partnerschaft mit Nvidia ein, um KI-gestützte Dienste in seinen Restaurants zu implementieren. Dazu gehört die KI-gestützte Sprachbestellung an Drive-Ins und am Telefon, die 2025 an 500 Standorten eingeführt werden soll.
- Im Januar 2024 führte ITC Limited KI-Technologien zur verbesserten Qualitätskontrolle in der Milch- und Getränkeproduktion ein. Durch den Einsatz visueller Inspektionssysteme und Echtzeitüberwachung will das Unternehmen eine hohe Produktqualität sicherstellen.
- Im Juli 2024 ernannte Mattson, ein Innovationsunternehmen für Lebensmittel und Getränke, seinen ersten Chief Artificial Intelligence Officer und führte KI-gestützte Produktinnovationsdienste ein. Die neue KI-Plattform ProtoThink ermöglicht die schnelle Ideenfindung mithilfe spezialisierter KI-Modelle.
SKU-
Erhalten Sie Online-Zugriff auf den Bericht zur weltweit ersten Market Intelligence Cloud
- Interaktives Datenanalyse-Dashboard
- Unternehmensanalyse-Dashboard für Chancen mit hohem Wachstumspotenzial
- Zugriff für Research-Analysten für Anpassungen und Abfragen
- Konkurrenzanalyse mit interaktivem Dashboard
- Aktuelle Nachrichten, Updates und Trendanalyse
- Nutzen Sie die Leistungsfähigkeit der Benchmark-Analyse für eine umfassende Konkurrenzverfolgung
Forschungsmethodik
Die Datenerfassung und Basisjahresanalyse werden mithilfe von Datenerfassungsmodulen mit großen Stichprobengrößen durchgeführt. Die Phase umfasst das Erhalten von Marktinformationen oder verwandten Daten aus verschiedenen Quellen und Strategien. Sie umfasst die Prüfung und Planung aller aus der Vergangenheit im Voraus erfassten Daten. Sie umfasst auch die Prüfung von Informationsinkonsistenzen, die in verschiedenen Informationsquellen auftreten. Die Marktdaten werden mithilfe von marktstatistischen und kohärenten Modellen analysiert und geschätzt. Darüber hinaus sind Marktanteilsanalyse und Schlüsseltrendanalyse die wichtigsten Erfolgsfaktoren im Marktbericht. Um mehr zu erfahren, fordern Sie bitte einen Analystenanruf an oder geben Sie Ihre Anfrage ein.
Die wichtigste Forschungsmethodik, die vom DBMR-Forschungsteam verwendet wird, ist die Datentriangulation, die Data Mining, die Analyse der Auswirkungen von Datenvariablen auf den Markt und die primäre (Branchenexperten-)Validierung umfasst. Zu den Datenmodellen gehören ein Lieferantenpositionierungsraster, eine Marktzeitlinienanalyse, ein Marktüberblick und -leitfaden, ein Firmenpositionierungsraster, eine Patentanalyse, eine Preisanalyse, eine Firmenmarktanteilsanalyse, Messstandards, eine globale versus eine regionale und Lieferantenanteilsanalyse. Um mehr über die Forschungsmethodik zu erfahren, senden Sie eine Anfrage an unsere Branchenexperten.
Anpassung möglich
Data Bridge Market Research ist ein führendes Unternehmen in der fortgeschrittenen formativen Forschung. Wir sind stolz darauf, unseren bestehenden und neuen Kunden Daten und Analysen zu bieten, die zu ihren Zielen passen. Der Bericht kann angepasst werden, um Preistrendanalysen von Zielmarken, Marktverständnis für zusätzliche Länder (fordern Sie die Länderliste an), Daten zu klinischen Studienergebnissen, Literaturübersicht, Analysen des Marktes für aufgearbeitete Produkte und Produktbasis einzuschließen. Marktanalysen von Zielkonkurrenten können von technologiebasierten Analysen bis hin zu Marktportfoliostrategien analysiert werden. Wir können so viele Wettbewerber hinzufügen, wie Sie Daten in dem von Ihnen gewünschten Format und Datenstil benötigen. Unser Analystenteam kann Ihnen auch Daten in groben Excel-Rohdateien und Pivot-Tabellen (Fact Book) bereitstellen oder Sie bei der Erstellung von Präsentationen aus den im Bericht verfügbaren Datensätzen unterstützen.

