Global Edge Artificial Intelligence (AI) Hardware-Marktgröße, Marktanteil und Trendanalysebericht – Branchenüberblick und Prognose bis 2032

Inhaltsverzeichnis anfordernInhaltsverzeichnis anfordern Mit Analyst sprechen Mit Analyst sprechen Kostenloser Beispielbericht Kostenloser Beispielbericht Vor dem Kauf anfragen Vorher anfragen Jetzt kaufenJetzt kaufen

Global Edge Artificial Intelligence (AI) Hardware-Marktgröße, Marktanteil und Trendanalysebericht – Branchenüberblick und Prognose bis 2032

  • Semiconductors and Electronics
  • Upcoming Reports
  • Jan 2025
  • Global
  • 350 Seiten
  • Anzahl der Tabellen: 60
  • Anzahl der Abbildungen: 220

Umgehen Sie die Zollherausforderungen mit agiler Supply-Chain-Beratung

Die Analyse des Supply-Chain-Ökosystems ist jetzt Teil der DBMR-Berichte

Global Edge Ai Hardware Market

Marktgröße in Milliarden USD

CAGR :  % Diagram

Chart Image USD 1.86 Billion USD 4.94 Billion 2024 2031
Diagramm Prognosezeitraum
2025 –2031
Diagramm Marktgröße (Basisjahr)
USD 1.86 Billion
Diagramm Marktgröße (Prognosejahr)
USD 4.94 Billion
Diagramm CAGR
%
Diagramm Wichtige Marktteilnehmer
  • Cisco
  • IBM
  • Intel Corporation
  • SAMSUNG
  • Google

Globale Edge-Marktsegmentierung für künstliche Intelligenz (KI)-Hardware nach Geräten (Smartphones, Kameras, Roboter, tragbare Geräte, intelligente Lautsprecher, Automobile und intelligente Spiegel), Prozessoren (Zentraleinheit (CPU), Grafikprozessor (GPU), anwendungsspezifischer integrierter Schaltkreis (ASIC) und andere), Stromverbrauch (weniger als 1 W, 1–3 W, 3–5 W, 5–10 W und mehr als 10 W), Prozess (Training und Inferenz), Endbenutzerbranche (Unterhaltungselektronik, Smart Home, Automobil und Transport, Regierung, Gesundheitswesen, Industrie, Luft- und Raumfahrt und Verteidigung, Bauwesen und andere) – Branchentrends und Prognose bis 2032

Edge-Hardwaremarkt für künstliche Intelligenz (KI)

Edge-Hardware für künstliche Intelligenz (KI) – Marktanalyse

Der Edge-Markt für künstliche Intelligenz (KI)-Hardware wächst aufgrund technologischer Fortschritte und der zunehmenden Verbreitung von KI-Anwendungen rasant. Edge-KI bedeutet, Daten näher an der Quelle zu verarbeiten (auf Geräten wie Smartphones, IoT-Geräten und autonomen Fahrzeugen), anstatt sich auf zentralisierte Cloud-Rechenzentren zu verlassen. Jüngste Innovationen bei Halbleiterchips, wie spezialisierte KI-Prozessoren und neuromorphes Computing, haben die Effizienz und Leistung von Edge-Geräten deutlich verbessert.

Zu den neuesten Methoden gehören die Entwicklung von KI-Chips mit geringem Stromverbrauch und Edge-Computing-Frameworks, die darauf ausgelegt sind, Machine-Learning-Modelle effizient am Edge auszuführen. Diese Technologien unterstützen die Echtzeit-Datenverarbeitung, reduzieren die Latenz und verbessern die Entscheidungsgeschwindigkeit in Anwendungen wie Smart Homes, industrieller Automatisierung und autonomen Systemen.

Da Unternehmen zunehmend schnellere und zuverlässigere KI-basierte Lösungen verlangen, gewinnt Edge-KI-Hardware an Bedeutung. Der Markt wird außerdem durch die Notwendigkeit verbesserter Privatsphäre und Sicherheit angetrieben, da Edge-Geräte Daten lokal verarbeiten können, ohne sie in die Cloud übertragen zu müssen, was mehr Kontrolle über vertrauliche Informationen bietet. Es wird erwartet, dass dieser Trend das Marktwachstum weiter ankurbelt.

Edge-Hardware für künstliche Intelligenz (KI) Marktgröße

Der globale Markt für Edge-Hardware für künstliche Intelligenz (KI) wurde im Jahr 2024 auf 1,86 Milliarden US-Dollar geschätzt und soll bis 2032 4,94 Milliarden US-Dollar erreichen, mit einer CAGR von 20,84 % während des Prognosezeitraums 2025 bis 2032. Zusätzlich zu den Einblicken in Marktszenarien wie Marktwert, Wachstumsrate, Segmentierung, geografische Abdeckung und wichtige Akteure enthalten die von Data Bridge Market Research kuratierten Marktberichte auch eingehende Expertenanalysen, geografisch dargestellte Produktion und Kapazität nach Unternehmen, Netzwerklayouts von Distributoren und Partnern, detaillierte und aktuelle Preistrendanalysen und Defizitanalysen von Lieferkette und Nachfrage.

Edge-Hardware für künstliche Intelligenz (KI) – Markttrends

„Zunehmende Nutzung KI-gestützter Edge-Geräte“

Ein spezifischer Trend, der das Wachstum auf dem Markt für Edge-Künstliche-Intelligenz-Hardware (KI) vorantreibt, ist die zunehmende Verbreitung von KI-gestützten Edge-Geräten. Diese Geräte, wie intelligente Kameras, Sensoren und autonome Fahrzeuge, sind darauf ausgelegt, Daten lokal zu verarbeiten, wodurch Latenz und Bandbreitenverbrauch reduziert werden. Da Branchen wie die Fertigung, das Gesundheitswesen und die Automobilindustrie auf Echtzeit-Datenanalyse angewiesen sind, ist dieser Trend von entscheidender Bedeutung. In intelligenten Fabriken ermöglicht Edge-KI beispielsweise die Echtzeit-Fehlererkennung und steigert so die Betriebseffizienz. Darüber hinaus nutzen autonome Fahrzeuge Edge-KI, um Sensordaten für eine sofortige Entscheidungsfindung zu verarbeiten und so Sicherheit und Leistung zu verbessern. Da die Nachfrage nach Echtzeitverarbeitung wächst, gewinnt Edge-KI-Hardware in verschiedenen Sektoren weiter an Bedeutung.

Berichtsumfang und Edge-Marktsegmentierung für künstliche Intelligenz (KI)-Hardware

Eigenschaften

Edge-Hardware für künstliche Intelligenz (KI) – Wichtige Markteinblicke

Abgedeckte Segmente

  • Nach Gerät: Smartphones, Kameras, Roboter, Wearables, Smart Speaker , Automotive und Smart Mirror
  • Nach Prozessoren: Central Processing Unit (CPU), Graphics Processing Unit (GPU), Application-Specific Integrated Circuit (ASIC) und andere
  • Nach Stromverbrauch: Weniger als 1 W, 1–3 W, 3–5 W, 5–10 W und mehr als 10 W
  • Nach Prozess: Training und Inferenz
  • Nach Endverbraucherbranche: Unterhaltungselektronik , Smart Home , Automobil und Transport, Regierung, Gesundheitswesen, Industrie, Luft- und Raumfahrt und Verteidigung, Bauwesen und andere

Abgedeckte Länder

USA, Kanada und Mexiko in Nordamerika, Deutschland, Frankreich, Großbritannien, Niederlande, Schweiz, Belgien, Russland, Italien, Spanien, Türkei, Restliches Europa in Europa, China, Japan, Indien, Südkorea, Singapur, Malaysia, Australien, Thailand, Indonesien, Philippinen, Restlicher Asien-Pazifik-Raum (APAC) in Asien-Pazifik (APAC), Saudi-Arabien, Vereinigte Arabische Emirate, Südafrika, Ägypten, Israel, Restlicher Naher Osten und Afrika (MEA) als Teil von Naher Osten und Afrika (MEA), Brasilien, Argentinien und Restliches Südamerika als Teil von Südamerika

Wichtige Marktteilnehmer

Cisco Systems, Inc. (USA), IBM (USA), Intel Corporation (USA), SAMSUNG (Südkorea), Google (USA), Microsoft (USA), Micron Technology, Inc (USA), NVIDIA Corporation (USA), Oracle (USA), Arm Limited (Großbritannien), Xilinx (USA), Advanced Micro Devices, Inc (USA), Dell (USA), Hewlett Packard Enterprises Development LP (USA), Habana Labs Ltd (USA), Facebook, Inc (USA), Synopsys, Inc (USA), Nutanix (USA), Pure Storage, Inc (USA), Amazon Web Services, Inc (USA)

Marktchancen

  • Fortschritte bei KI- und ML-Algorithmen
  • Zunehmende KI in der Unterhaltungselektronik

Wertschöpfende Dateninfosets

Zusätzlich zu den Einblicken in Marktszenarien wie Marktwert, Wachstumsrate, Segmentierung, geografische Abdeckung und wichtige Akteure enthalten die von Data Bridge Market Research zusammengestellten Marktberichte auch ausführliche Expertenanalysen, geografisch dargestellte Produktion und Kapazität nach Unternehmen, Netzwerklayouts von Distributoren und Partnern, detaillierte und aktuelle Preistrendanalysen und Defizitanalysen von Lieferkette und Nachfrage.

Edge-Hardware für künstliche Intelligenz (KI) – Marktdefinition

Edge-Künstliche-Intelligenz-Hardware (KI) bezieht sich auf spezialisierte Computergeräte, die KI-Aufgaben direkt an der Datenquelle oder am „Edge“ verarbeiten, anstatt sich auf Cloud-basierte Server zu verlassen. Diese Geräte, wie Edge-GPUs, TPUs und benutzerdefinierte KI-Chips, ermöglichen Echtzeit-Datenverarbeitung mit geringerer Latenz, reduzierter Bandbreitennutzung und verbesserter Privatsphäre. Edge-KI-Hardware wird häufig in IoT-Geräten, autonomen Fahrzeugen, industrieller Automatisierung und intelligenten Kameras verwendet und optimiert die Leistung, indem sie die lokale Ausführung von KI-Modellen ermöglicht. Dies reduziert die Abhängigkeit von zentralisierten Cloud-Infrastrukturen und verbessert Geschwindigkeit, Zuverlässigkeit und Skalierbarkeit in KI-gesteuerten Anwendungen.

Edge-Hardware für künstliche Intelligenz (KI) – Marktdynamik

Treiber

  • Verstärkte Nutzung von IoT-Geräten

Das rasante Wachstum des Internets der Dinge (IoT) ist ein wichtiger Treiber für den Edge-AI-Hardwaremarkt. Mit der zunehmenden Verbreitung von IoT-Geräten wie Smartkameras, Wearables und Industriesensoren steigt die Nachfrage nach lokaler Datenverarbeitung. Edge-AI-Hardware ermöglicht es diesen Geräten, Daten vor Ort zu verarbeiten, wodurch die mit Cloud-Computing verbundenen Latenz- und Bandbreitenkosten reduziert werden. In Smart-Home-Systemen beispielsweise nutzen Wearables wie Fitness-Tracker Edge-AI für die Echtzeit-Datenanalyse und ermöglichen personalisiertes Feedback, ohne auf Cloud-Server angewiesen zu sein. Dieser dezentrale Ansatz steigert die Effizienz, gewährleistet die Privatsphäre und minimiert die Abhängigkeit von kontinuierlicher Cloud-Konnektivität, was die Nachfrage nach Edge-AI-Hardwarelösungen ankurbelt.

  • Einführung von 5G

Der Einsatz von 5G-Netzwerken ist ein wichtiger Treiber für den Edge-KI-Hardwaremarkt. Dank der höheren Geschwindigkeiten und geringeren Latenzzeiten von 5G können Edge-Geräte nun Daten lokal verarbeiten, was die Abhängigkeit von Cloud-Servern verringert und Entscheidungen in Echtzeit ermöglicht. So ging Telstra im Februar 2021 eine Partnerschaft mit AWS ein, um sein 5G-Netzwerk mit der Edge-Technologie von AWS zu kombinieren. Diese Zusammenarbeit zielt darauf ab, die Leistung von 5G-Anwendungen zu verbessern, indem das in die 5G-Infrastruktur von Telstra integrierte Edge-Computing von AWS genutzt wird. Die Partnerschaft zielt darauf ab, die Edge-Computing-Fähigkeiten zu verbessern und das Potenzial von Echtzeitanwendungen in verschiedenen Branchen in Australien freizusetzen.

Gelegenheiten

  • Fortschritte bei KI- und ML-Algorithmen

Die kontinuierliche Entwicklung effizienterer Algorithmen für maschinelles Lernen (ML) und künstliche Intelligenz (KI), die auf Edge-Geräte zugeschnitten sind, eröffnet erhebliche Chancen auf dem Markt für Edge-KI-Hardware. Diese Algorithmen sind darauf ausgelegt, die Leistung auf Hardware mit begrenzter Verarbeitungsleistung und begrenztem Energieverbrauch zu optimieren und so erweiterte KI-Funktionen auf kleineren, energieeffizienten Geräten zu ermöglichen. Dies ist besonders wertvoll für Anwendungen wie intelligente Kameras, Wearables und autonome Systeme, die Echtzeitentscheidungen erfordern, ohne auf Cloud-Computing angewiesen zu sein. So stellte HPE im März 2024 neue GenAI-Trainings- und Inferenzprodukte vor, die Microservices und Nvidia-GPU-Software verwenden. Ihre Edge-to-Data-Center-, Hybrid- und Cloud-Lösungen sind darauf ausgelegt, die GenAI-Fähigkeiten zu beschleunigen. Die Einführung umfasst Supercomputing-Systeme mit Nvidia-Komponenten, die darauf abzielen, das Training und die Inferenz von KI-Modellen zu verbessern und den Unternehmensanforderungen nach KI-gesteuerter Leistung und Skalierbarkeit gerecht zu werden. Da KI-Modelle effizienter und leichter werden, können Unternehmen in Branchen wie dem Gesundheitswesen, der Automobilindustrie und der Fertigung kostengünstige und skalierbare Edge-KI-Lösungen implementieren und so das Marktwachstum beschleunigen.

  • Zunehmende KI in der Unterhaltungselektronik

Die zunehmende Integration von KI in Unterhaltungselektronik wie intelligente Lautsprecher, Fernseher und Kameras bietet eine große Chance für den Markt für Edge-KI-Hardware. Da Geräte immer intelligenter werden, benötigen sie leistungsfähigere und effizientere Hardware, um Daten lokal zu verarbeiten und so schnelle Reaktionen und ein verbessertes Benutzererlebnis zu gewährleisten. Beispielsweise erfordern KI-gesteuerte Funktionen wie die Spracherkennung in intelligenten Lautsprechern oder die Gesichtserkennung in Kameras leistungsstarke Edge-Computing-Lösungen. Diese Nachfrage treibt den Bedarf an spezialisierten KI-Chips und -Hardware voran, die komplexe Aufgaben bewältigen können, ohne auf Cloud-basierte Verarbeitung angewiesen zu sein, was den Herstellern letztendlich einen Wettbewerbsvorteil bietet und zum Wachstum des Marktes für Edge-KI-Hardware beiträgt.

Einschränkungen/Herausforderungen

  • Hoher Stromverbrauch

Der hohe Stromverbrauch bleibt eine große Herausforderung für den Edge-KI-Hardwaremarkt. Edge-KI-Geräte benötigen erhebliche Rechenleistung, um Daten lokal zu verarbeiten, was zu einem erhöhten Energieverbrauch führt. Dieses Problem ist besonders problematisch für batteriebetriebene oder tragbare Geräte mit begrenzter Stromversorgung. Da die Nachfrage nach leistungsstarken KI-Modellen steigt, wird die Notwendigkeit einer effizienten Energienutzung immer wichtiger. Geräte mit unzureichender Akkulaufzeit können zu kürzeren Betriebszeiten führen, was ein häufiges Aufladen oder größere Akkus erforderlich macht, was wiederum das Gewicht und die Größe des Geräts erhöht. Folglich begrenzt der hohe Stromverbrauch die weit verbreitete Einführung von Edge-KI-Lösungen, insbesondere bei Anwendungen, bei denen Portabilität und lange Akkulaufzeit von entscheidender Bedeutung sind.

  • Datenschutz und Sicherheit

Datenschutz und -sicherheit stellen für den Edge-KI-Hardwaremarkt erhebliche Herausforderungen dar. Da sensible Daten lokal auf Edge-Geräten verarbeitet werden, ist die Gewährleistung ihrer Vertraulichkeit und ihres Schutzes vor Cyberbedrohungen von entscheidender Bedeutung. Diese Geräte sind im Vergleich zu zentralisierten Cloud-Systemen häufig anfälliger für Sicherheitsverletzungen, was sie zu attraktiven Zielen für Cyberangriffe macht. Darüber hinaus erschwert die Einhaltung sich entwickelnder Datenschutzbestimmungen wie der DSGVO die Situation zusätzlich. Aufgrund der dezentralen Natur von Edge-Geräten ist die Durchsetzung einheitlicher Sicherheitsmaßnahmen auf allen Geräten schwierig, was das Risiko von Datenlecks oder unbefugtem Zugriff erhöht. Dieser Mangel an robusten Sicherheitsrahmen behindert die breite Akzeptanz und das Wachstum des Marktes.

Dieser Marktbericht enthält Einzelheiten zu neuen Entwicklungen, Handelsvorschriften, Import-Export-Analysen, Produktionsanalysen, Optimierung der Wertschöpfungskette, Marktanteilen, Auswirkungen inländischer und lokaler Marktteilnehmer, analysiert Chancen in Bezug auf neue Einnahmequellen, Änderungen der Marktvorschriften, strategische Marktwachstumsanalysen, Marktgröße, Kategoriemarktwachstum, Anwendungsnischen und -dominanz, Produktzulassungen, Produkteinführungen, geografische Expansionen und technologische Innovationen auf dem Markt. Um weitere Informationen zum Markt zu erhalten, wenden Sie sich an Data Bridge Market Research, um ein Analyst Briefing zu erhalten. Unser Team hilft Ihnen dabei, eine fundierte Marktentscheidung zu treffen, um Marktwachstum zu erzielen.

Edge-Hardware für künstliche Intelligenz (KI) – Marktumfang

Der Markt ist nach Geräten, Prozessoren, Stromverbrauch und Endverbraucherbranche segmentiert. Das Wachstum dieser Segmente hilft Ihnen bei der Analyse schwacher Wachstumssegmente in den Branchen und bietet den Benutzern einen wertvollen Marktüberblick und Markteinblicke, die ihnen bei der strategischen Entscheidungsfindung zur Identifizierung der wichtigsten Marktanwendungen helfen.

Gerät

 Prozessoren

  • Zentrale Verarbeitungseinheit (CPU)
  • Grafikprozessor (GPU)
  • Anwendungsspezifischer integrierter Schaltkreis (ASIC)
  • Sonstiges

 Energieaufnahme

  • Weniger als 1 W
  • 1-3W
  • 3-5W
  • 5-10W
  • Mehr als 10W

 Verfahren

  • Ausbildung
  • Schlussfolgerung

 Endverbraucherindustrie

Regionale Analyse des Edge-Marktes für künstliche Intelligenz (KI)-Hardware

Der Markt wird analysiert und es werden Einblicke in die Marktgröße und Trends nach Geräten, Prozessoren, Stromverbrauch und Endbenutzerbranche bereitgestellt, wie oben angegeben.

Die im Marktbericht abgedeckten Länder sind die USA, Kanada, Mexiko in Nordamerika, Deutschland, Schweden, Polen, Dänemark, Italien, Großbritannien, Frankreich, Spanien, Niederlande, Belgien, Schweiz, Türkei, Russland, Restliches Europa in Europa, Japan, China, Indien, Südkorea, Neuseeland, Vietnam, Australien, Singapur, Malaysia, Thailand, Indonesien, Philippinen, Restlicher Asien-Pazifik-Raum (APAC) in Asien-Pazifik (APAC), Brasilien, Argentinien, Restliches Südamerika als Teil von Südamerika, Vereinigte Arabische Emirate, Saudi-Arabien, Oman, Katar, Kuwait, Südafrika, Restlicher Naher Osten und Afrika (MEA) als Teil von Naher Osten und Afrika (MEA).

Aufgrund der hohen Verbreitung von KI-basierten Servern und der Präsenz führender KI-Technologieanbieter in der Region wird Nordamerika voraussichtlich den Markt für Edge-Hardware für künstliche Intelligenz (KI) dominieren. Unternehmen in Nordamerika wie NVIDIA, Intel und IBM treiben die Entwicklung von KI-Hardwaretechnologien voran. Die starke Infrastruktur der Region, die qualifizierten Arbeitskräfte und die Investitionen in die KI-Forschung untermauern ihre Dominanz weiter und positionieren Nordamerika als Schlüsselakteur im Edge-KI-Hardwaresektor.

Im asiatisch-pazifischen Raum wird aufgrund des laufenden Baus „neuer Infrastrukturprojekte“ wie 5G-Netzwerken und Rechenzentren ein deutliches Wachstum auf dem Markt für Edge-Hardware für künstliche Intelligenz (KI) erwartet. Die zunehmende Einführung KI-gestützter Lösungen in Branchen wie Telekommunikation, Fertigung und Gesundheitswesen steigert die Marktnachfrage zusätzlich. Darüber hinaus sind der Anstieg von Smart-City-Initiativen und der Bedarf an Echtzeit-Datenverarbeitung wichtige Treiber, die den Ausbau der KI-Hardwaretechnologien in der Region unterstützen.

Der Länderabschnitt des Berichts enthält auch individuelle marktbeeinflussende Faktoren und Änderungen der Marktregulierung, die die aktuellen und zukünftigen Trends des Marktes beeinflussen. Datenpunkte wie Downstream- und Upstream-Wertschöpfungskettenanalyse, technische Trends und Porters Fünf-Kräfte-Analyse sowie Fallstudien sind einige der Anhaltspunkte, die zur Prognose des Marktszenarios für einzelne Länder verwendet werden. Auch die Präsenz und Verfügbarkeit globaler Marken und ihre Herausforderungen aufgrund großer oder geringer Konkurrenz durch lokale und inländische Marken sowie die Auswirkungen inländischer Zölle und Handelsrouten werden bei der Bereitstellung einer Prognoseanalyse der Länderdaten berücksichtigt.

Marktanteil von Edge-Hardware für künstliche Intelligenz (KI)

Die Wettbewerbslandschaft des Marktes liefert Details nach Wettbewerbern. Die enthaltenen Details sind Unternehmensübersicht, Unternehmensfinanzen, erzielter Umsatz, Marktpotenzial, Investitionen in Forschung und Entwicklung, neue Marktinitiativen, globale Präsenz, Produktionsstandorte und -anlagen, Produktionskapazitäten, Stärken und Schwächen des Unternehmens, Produkteinführung, Produktbreite und -umfang, Anwendungsdominanz. Die oben angegebenen Datenpunkte beziehen sich nur auf den Fokus der Unternehmen in Bezug auf den Markt.

Die auf dem Markt tätigen Marktführer im Bereich Edge-Hardware für künstliche Intelligenz (KI) sind:

  • Cisco Systems, Inc. (USA)
  • IBM (USA)
  • Intel Corporation (USA)
  • SAMSUNG (Südkorea)
  • Google (USA)
  • Microsoft (US)
  • Micron Technology, Inc. (USA)
  • NVIDIA Corporation (USA)
  • Oracle (USA)
  • Arm Limited (Großbritannien)
  • Xilinx (USA)
  • Advanced Micro Devices, Inc. (USA)
  • Dell (USA)
  •  Hewlett Packard Enterprises Development LP (USA)
  •  Habana Labs Ltd (USA)
  •  Facebook, Inc (USA)
  •  Synopsys, Inc (USA)
  • Nutanix (USA)
  • Pure Storage, Inc (USA)
  •  Amazon Web Services, Inc. (USA)

Neueste Entwicklungen auf dem Edge-Hardwaremarkt für künstliche Intelligenz (KI)

  • Im Juli 2024 ist VIA Technologies eine Partnerschaft mit Rutronik eingegangen, um die Zugänglichkeit seiner fortschrittlichen IoT-, Edge-KI- und Computer-Vision-Technologien zu verbessern. Diese strategische Zusammenarbeit zielt auf die Bereiche Industrie, Einzelhandel und Handel ab und konzentriert sich auf Echtzeit-Datenverarbeitung und reduzierte Latenzen. Die intelligenten Edge-Lösungen von VIA, die mit MediaTek Genio-Prozessoren ausgestattet sind, sind auf vielfältige Anwendungen in diesen Bereichen zugeschnitten.
  • Im Juli 2024 hat sich TRUMPF mit SiMa.ai zusammengetan, einem softwarezentrierten Unternehmen, das sich auf eingebettete Edge-Maschinenlernsysteme spezialisiert hat, um KI-Funktionen in die Lasersysteme von TRUMPF zu integrieren. Diese Zusammenarbeit zielt auf Anwendungen in den Bereichen Schweißen, Schneiden, Markieren und Pulvermetall-3D-Druck ab. Die Allianz wird die Lasertechnologien von TRUMPF mit fortschrittlicher künstlicher Intelligenz für effizientere und präzisere Abläufe ausstatten.
  • Im März 2024 startete Edge Impulse Inc. eine direkte Integration mit Arm Keil MDK und bietet damit Zugang zu fortschrittlichen Modellen für maschinelles Lernen (ML) und KI. Diese Integration erleichtert die Zusammenarbeit zwischen Spezialisten und Teams für eingebettete Systeme und hilft ihnen, Edge-KI-Tools effizienter zu entwickeln und auf den Markt zu bringen. Die Initiative zielt darauf ab, die Entwicklung von ML-Modellen für Edge-Geräte zu vereinfachen.
  • Im März 2024 stellte HPE neue GenAI-Trainings- und Inferenzprodukte vor, die Microservices und Nvidia-GPU-Software verwenden. Ihre Edge-to-Datacenter-, Hybrid- und Cloud-Lösungen sind darauf ausgelegt, GenAI-Fähigkeiten zu beschleunigen. Die Einführung umfasst Supercomputing-Systeme mit Nvidia-Komponenten, die darauf abzielen, das Training und die Inferenz von KI-Modellen zu verbessern und den Unternehmensanforderungen nach KI-gesteuerter Leistung und Skalierbarkeit gerecht zu werden.
  • Im September 2022 erweiterte Nvidia seine Edge-Künstliche-Intelligenz-Technologie für das Gesundheitswesen und die Robotik mit der Nvidia IGX-Plattform. Die Plattform ist sowohl auf industrielle als auch auf medizinische Anwendungen ausgerichtet und soll die Leistung beschleunigen und Echtzeiteinblicke ermöglichen. Diese Erweiterung bietet hochmoderne KI-Lösungen, die die Funktionalität und Reaktionsfähigkeit kritischer Sektoren wie dem Gesundheitswesen und der Robotik verbessern
  • Im Februar 2021 ging Telstra eine Partnerschaft mit AWS ein, um sein 5G-Netzwerk mit der Edge-Technologie von AWS zu kombinieren. Ziel dieser Zusammenarbeit ist es, die Leistung von 5G-Anwendungen zu verbessern, indem das Edge-Computing von AWS in die 5G-Infrastruktur von Telstra integriert wird. Ziel der Partnerschaft ist es, die Edge-Computing-Fähigkeiten zu verbessern und das Potenzial von Echtzeitanwendungen in verschiedenen Branchen in Australien freizusetzen.


SKU-

Erhalten Sie Online-Zugriff auf den Bericht zur weltweit ersten Market Intelligence Cloud

  • Interaktives Datenanalyse-Dashboard
  • Unternehmensanalyse-Dashboard für Chancen mit hohem Wachstumspotenzial
  • Zugriff für Research-Analysten für Anpassungen und Abfragen
  • Konkurrenzanalyse mit interaktivem Dashboard
  • Aktuelle Nachrichten, Updates und Trendanalyse
  • Nutzen Sie die Leistungsfähigkeit der Benchmark-Analyse für eine umfassende Konkurrenzverfolgung
Demo anfordern

Forschungsmethodik

Die Datenerfassung und Basisjahresanalyse werden mithilfe von Datenerfassungsmodulen mit großen Stichprobengrößen durchgeführt. Die Phase umfasst das Erhalten von Marktinformationen oder verwandten Daten aus verschiedenen Quellen und Strategien. Sie umfasst die Prüfung und Planung aller aus der Vergangenheit im Voraus erfassten Daten. Sie umfasst auch die Prüfung von Informationsinkonsistenzen, die in verschiedenen Informationsquellen auftreten. Die Marktdaten werden mithilfe von marktstatistischen und kohärenten Modellen analysiert und geschätzt. Darüber hinaus sind Marktanteilsanalyse und Schlüsseltrendanalyse die wichtigsten Erfolgsfaktoren im Marktbericht. Um mehr zu erfahren, fordern Sie bitte einen Analystenanruf an oder geben Sie Ihre Anfrage ein.

Die wichtigste Forschungsmethodik, die vom DBMR-Forschungsteam verwendet wird, ist die Datentriangulation, die Data Mining, die Analyse der Auswirkungen von Datenvariablen auf den Markt und die primäre (Branchenexperten-)Validierung umfasst. Zu den Datenmodellen gehören ein Lieferantenpositionierungsraster, eine Marktzeitlinienanalyse, ein Marktüberblick und -leitfaden, ein Firmenpositionierungsraster, eine Patentanalyse, eine Preisanalyse, eine Firmenmarktanteilsanalyse, Messstandards, eine globale versus eine regionale und Lieferantenanteilsanalyse. Um mehr über die Forschungsmethodik zu erfahren, senden Sie eine Anfrage an unsere Branchenexperten.

Anpassung möglich

Data Bridge Market Research ist ein führendes Unternehmen in der fortgeschrittenen formativen Forschung. Wir sind stolz darauf, unseren bestehenden und neuen Kunden Daten und Analysen zu bieten, die zu ihren Zielen passen. Der Bericht kann angepasst werden, um Preistrendanalysen von Zielmarken, Marktverständnis für zusätzliche Länder (fordern Sie die Länderliste an), Daten zu klinischen Studienergebnissen, Literaturübersicht, Analysen des Marktes für aufgearbeitete Produkte und Produktbasis einzuschließen. Marktanalysen von Zielkonkurrenten können von technologiebasierten Analysen bis hin zu Marktportfoliostrategien analysiert werden. Wir können so viele Wettbewerber hinzufügen, wie Sie Daten in dem von Ihnen gewünschten Format und Datenstil benötigen. Unser Analystenteam kann Ihnen auch Daten in groben Excel-Rohdateien und Pivot-Tabellen (Fact Book) bereitstellen oder Sie bei der Erstellung von Präsentationen aus den im Bericht verfügbaren Datensätzen unterstützen.

Häufig gestellte Fragen

Der Markt ist basierend auf Globale Edge-Marktsegmentierung für künstliche Intelligenz (KI)-Hardware nach Geräten (Smartphones, Kameras, Roboter, tragbare Geräte, intelligente Lautsprecher, Automobile und intelligente Spiegel), Prozessoren (Zentraleinheit (CPU), Grafikprozessor (GPU), anwendungsspezifischer integrierter Schaltkreis (ASIC) und andere), Stromverbrauch (weniger als 1 W, 1–3 W, 3–5 W, 5–10 W und mehr als 10 W), Prozess (Training und Inferenz), Endbenutzerbranche (Unterhaltungselektronik, Smart Home, Automobil und Transport, Regierung, Gesundheitswesen, Industrie, Luft- und Raumfahrt und Verteidigung, Bauwesen und andere) – Branchentrends und Prognose bis 2032 segmentiert.
Die Größe des Global Edge Artificial Intelligence (AI) Hardware-Markt wurde im Jahr 2024 auf 1.86 USD Billion USD geschätzt.
Der Global Edge Artificial Intelligence (AI) Hardware-Markt wird voraussichtlich mit einer CAGR von 20.84% im Prognosezeitraum 2025 bis 2031 wachsen.
Die Hauptakteure auf dem Markt sind Cisco, IBM, Intel Corporation, SAMSUNG, Google, Microsoft, Micron Technology, NVIDIA Corporation, Oracle, Arm Limited, Xilinx, Advanced Micro Devices, Dell, Hewlett Packard Enterprises Development LP, Habana Labs Ltd, Facebook, Synopsys, Nutanix, Pure Storage, Amazon Web Services.
Testimonial