Global Modelops Market
Marktgröße in Milliarden USD
CAGR :
%
USD
5.31 Billion
USD
4.03 Billion
2024
2032
| 2025 –2032 | |
| USD 5.31 Billion | |
| USD 4.03 Billion | |
|
|
|
|
Globale ModelOps-Marktsegmentierung nach Angebot (Plattformen, Dienste), Bereitstellung (Cloud und vor Ort), Modell (ML-Modelle, graphenbasierte Modelle, Regel- und heuristische Modelle, linguistische Modelle, agentenbasierte Modelle und andere), Anwendung (Kundendienst und virtuelle Assistenten, Robotik und Automatisierung, Gesundheitswesen, Finanzdienstleistungen, Sicherheit und Überwachung, Spiele und Unterhaltung, Marketing und Vertrieb, Personalwesen, Recht und Compliance und andere), Vertikal (BFSI, Einzelhandel und E-Commerce , Gesundheitswesen und Biowissenschaften, IT und Telekommunikation, Energie und Versorgung, Fertigung, Transport und Logistik und andere) – Branchentrends und Prognose bis 2032
Wie groß ist der globale ModelOps-Markt und wie hoch ist seine Wachstumsrate?
- Der globale ModelOps-Markt wird im Jahr 2024 auf 5,31 Milliarden US-Dollar geschätzt und soll bis 2032 4,03 Milliarden US-Dollar erreichen , bei einer CAGR von 37,90 % im Prognosezeitraum.
- ModelOps verzeichnet eine steigende Nachfrage in Sektoren wie BFSI, Gesundheitswesen und Fertigung aufgrund des wachsenden Bedarfs, KI/ML-Modelle in Echtzeit zu skalieren und gleichzeitig Governance und Compliance sicherzustellen.
- Die zunehmende Komplexität von KI-Modellen und die Notwendigkeit kontinuierlicher Überwachung, Umschulung und Versionskontrolle fördern die Einführung von ModelOps-Lösungen in Unternehmen weltweit
Was sind die wichtigsten Erkenntnisse des ModelOps-Marktes?
- Der Markt wächst aufgrund der zunehmenden Verbreitung von KI in großem Maßstab rasant und zwingt Unternehmen dazu, in Plattformen zu investieren, die betriebliche Effizienz und Modellverantwortung gewährleisten.
- ModelOps bietet konsistente Leistung, Compliance-Bereitschaft und Lebenszyklusmanagement für ML-Modelle und ist damit unverzichtbar für unternehmenskritische Anwendungen in regulierten Branchen.
- Die fortlaufende Integration von Cloud-nativen Architekturen und MLOps-Praktiken in Unternehmensstrategien macht ModelOps zu einem zentralen Faktor für KI-gesteuerte Entscheidungsfindung und trägt zur Marktdynamik bei.
- Nordamerika dominierte den ModelOps-Markt mit dem größten Umsatzanteil von 42,14 % im Jahr 2024, was auf die weit verbreitete Einführung von KI/ML in den Bereichen Finanzwesen, Gesundheitswesen und Einzelhandel zurückzuführen ist. Die frühzeitige Einführung fortschrittlicher Analyseplattformen in der Region und der Fokus auf die MLOps-Reife beschleunigen die ModelOps-Implementierung.
- Der ModelOps-Markt im asiatisch-pazifischen Raum wird voraussichtlich von 2025 bis 2032 mit einer CAGR von 12,52 % am schnellsten wachsen, angetrieben durch die zunehmende Nutzung von KI im Kundenservice, bei der Betrugserkennung und in Smart Cities.
- Das Segment Plattformen dominierte den ModelOps-Markt mit dem größten Marktanteil von 62,7 % im Jahr 2024, was auf den wachsenden Bedarf an integrierten Tools zurückzuführen ist, die den gesamten Lebenszyklus von KI/ML-Modellen verwalten.
Berichtsumfang und ModelOps-Marktsegmentierung
|
Eigenschaften |
Wichtige Markteinblicke von ModelOps |
|
Abgedeckte Segmente |
|
|
Abgedeckte Länder |
Nordamerika
Europa
Asien-Pazifik
Naher Osten und Afrika
Südamerika
|
|
Wichtige Marktteilnehmer |
|
|
Marktchancen |
|
|
Wertschöpfungsdaten-Infosets |
Zusätzlich zu den Einblicken in Marktszenarien wie Marktwert, Wachstumsrate, Segmentierung, geografische Abdeckung und wichtige Akteure enthalten die von Data Bridge Market Research kuratierten Marktberichte auch ausführliche Expertenanalysen, Preisanalysen, Markenanteilsanalysen, Verbraucherumfragen, demografische Analysen, Lieferkettenanalysen, Wertschöpfungskettenanalysen, eine Übersicht über Rohstoffe/Verbrauchsmaterialien, Kriterien für die Lieferantenauswahl, PESTLE-Analysen, Porter-Analysen und regulatorische Rahmenbedingungen. |
Was ist der wichtigste Trend im ModelOps-Markt?
Optimierter KI-Modell-Lebenszyklus durch Automatisierung und kontinuierliche Governance
- Ein wichtiger Trend, der den globalen ModelOps-Markt umgestaltet, ist die Verlagerung hin zur Automatisierung der Bereitstellung, Überwachung und Umschulung von KI/ML-Modellen, um die betriebliche Effizienz und den kontinuierlichen Wert von KI-Investitionen sicherzustellen.
- Unternehmen setzen zunehmend auf ModelOps-Plattformen, die in MLOps, AIOps und DevOps integriert sind und so eine nahtlose Koordination zwischen Datenwissenschaftlern, IT- und Betriebsteams ermöglichen.
- So hat IBM beispielsweise im März 2024 neue KI-Governance-Funktionen in seiner Watsonx-Plattform eingeführt, um einen verantwortungsvollen KI-Betrieb und die Einhaltung gesetzlicher Vorschriften in globalen Unternehmen zu gewährleisten.
- Unternehmen investieren außerdem in die Echtzeitverfolgung der Modellleistung mithilfe von Telemetriedaten, um Abweichungen zu erkennen und automatisierte Umschulungs-Workflows auszulösen.
- Diese Entwicklung unterstützt skalierbare, vertrauenswürdige und kontinuierlich lernende KI-Systeme in Branchen wie dem Gesundheitswesen, dem Finanzwesen, dem Einzelhandel und der Fertigung.
- Der Trend unterstreicht eine wachsende Nachfrage nach intelligenter Automatisierung, Lebenszyklusüberwachung und Compliance-gesteuertem Modellmanagement – der Schlüssel zur unternehmensweiten KI-Skalierung.=
Was sind die Haupttreiber des ModelOps-Marktes?
- Der Anstieg KI-gesteuerter Entscheidungsfindung und die Notwendigkeit, KI-Modelle über Pilotphasen hinaus zu operationalisieren, treiben den ModelOps-Markt voran.
- So hat Google Cloud beispielsweise im Mai 2024 seine Model Garden-Suite erweitert, um Unternehmen bei der Bereitstellung, Überwachung und Verwaltung von KI-Modellen im großen Maßstab mit integrierten Erklär- und Rückverfolgbarkeitsfunktionen zu unterstützen.
- ModelOps-Plattformen helfen Unternehmen, die Modellgenauigkeit sicherzustellen, Verzerrungen zu reduzieren und die sich entwickelnden KI-Vorschriften einzuhalten, was in Sektoren wie BFSI, Gesundheitswesen und öffentlichen Diensten von entscheidender Bedeutung ist.
- Wachsende Unternehmensdatenmengen und zunehmende Modellkomplexität ermutigen Unternehmen, Plattformen einzuführen, die automatisierte Bereitstellung, Skalierung und Governance unterstützen.
- Darüber hinaus erfordert die Entstehung von Hybrid- und Multi-Cloud-Umgebungen flexible ModelOps-Tools, die Modelle über verteilte Infrastrukturen hinweg verwalten können.
- Der Druck auf ethische KI-Praktiken, Kostenkontrolle und ROI-Tracking von KI-Implementierungen fördert die Einführung robuster ModelOps-Lösungen weiter
Welcher Faktor behindert das Wachstum des ModelOps-Marktes?
- Eine zentrale Herausforderung im ModelOps-Markt ist die fehlende Standardisierung von Tools und Workflows in den verschiedenen Phasen des KI/ML-Lebenszyklus, was zu Integrationskomplexitäten führt.
- So ergab beispielsweise eine Umfrage von Forrester im Februar 2023, dass über 60 % der Unternehmen aufgrund fragmentierter Modellbetriebsumgebungen Schwierigkeiten haben, ihre Data-Science-, IT- und Business-Teams zu vereinen.
- Darüber hinaus behindern die steile Lernkurve und der Mangel an qualifizierten Fachkräften mit KI- und Betriebskenntnissen die effektive Implementierung von ModelOps
- Viele Unternehmen haben zudem Schwierigkeiten, die Leistung ihrer Modelle in Produktionsumgebungen zu messen, was das Vertrauen in eine vollständige Automatisierung einschränkt.
- Budgetbeschränkungen, insbesondere in kleinen und mittleren Unternehmen, erschweren die Investition in umfassende ModelOps-Plattformen und KI-Governance-Tools.
- Die Lösung dieser Probleme durch offene Standards, einheitliche Plattformen und Low-Code/No-Code-ModelOps-Lösungen wird entscheidend sein, um ein breites Marktpotenzial zu erschließen.
Wie ist der ModelOps-Markt segmentiert?
Der Markt ist nach Angebot, Bereitstellung, Modell, Anwendung und Branche segmentiert.
- Durch das Angebot
Der ModelOps-Markt ist nach Angebot in Plattformen und Dienste unterteilt. Das Segment Plattformen dominierte den ModelOps-Markt mit dem größten Marktanteil von 62,7 % im Jahr 2024, was auf den wachsenden Bedarf an integrierten Tools zurückzuführen ist, die den gesamten Lebenszyklus von KI/ML-Modellen verwalten. Diese Plattformen ermöglichen eine schnellere Bereitstellung, Überwachung und Governance von Modellen in verschiedenen Geschäftsabläufen, insbesondere in datenzentrierten Unternehmen. Ihre Fähigkeit, Abläufe zu zentralisieren und die Einhaltung von Vorschriften sicherzustellen, macht sie zu einer wichtigen Investition in KI-getriebenen Branchen.
Für das Dienstleistungssegment wird von 2025 bis 2032 eine bemerkenswerte CAGR prognostiziert, was auf die steigende Nachfrage nach Beratung, Integration und Managed Services zur Unterstützung von Unternehmen mit begrenzter interner KI-Expertise zurückzuführen ist.
- Nach Bereitstellung
Der ModelOps-Markt ist je nach Bereitstellung in Cloud und On-Premises segmentiert. Das Cloud-Segment hielt im Jahr 2024 mit 69,3 % den größten Umsatzanteil, unterstützt durch die zunehmende Nutzung skalierbarer und flexibler Infrastrukturlösungen in Unternehmen. Cloudbasiertes ModelOps bietet nahtlose Integration, Kosteneffizienz und Fernzugriff und ist daher insbesondere bei KMU und Tech-Startups eine bevorzugte Wahl.
Die Bereitstellung vor Ort ist in Sektoren wie BFSI und Regierung weiterhin relevant, wo Datensouveränität, Sicherheit und Compliance weiterhin oberste Priorität haben.
- Nach Modell
Der ModelOps-Markt ist modellbasiert in ML-Modelle, graphenbasierte Modelle, regel- und heuristische Modelle, linguistische Modelle, agentenbasierte Modelle und weitere segmentiert. Das Segment der ML-Modelle dominierte den Markt mit dem höchsten Anteil von 47,8 % im Jahr 2024, was auf ihre weit verbreitete Verwendung in der Automatisierung, prädiktiven Analytik und Echtzeit-Entscheidungsfindung in verschiedenen Branchen zurückzuführen ist. ML-Modelle bilden die Grundlage für die meisten KI-Workflows und erfordern ein effizientes Management und eine kontinuierliche Optimierung, die ModelOps-Plattformen bieten.
Das Segment der graphenbasierten Modelle dürfte das schnellste Wachstum verzeichnen, unterstützt durch die zunehmende Akzeptanz bei der Betrugserkennung, Empfehlungssystemen und Wissensgraphen.
- Nach Anwendung
Der Markt ist nach Anwendungsbereichen segmentiert in Kundenservice und virtuelle Assistenten, Robotik und Automatisierung, Gesundheitswesen, Finanzdienstleistungen, Sicherheit und Überwachung, Gaming und Unterhaltung, Marketing und Vertrieb, Personalwesen, Recht und Compliance und weitere. Das Segment Kundenservice und virtuelle Assistenten hatte 2024 mit 24,6 % den größten Marktanteil, angetrieben durch den zunehmenden Einsatz von KI-Chatbots und automatisierten Support-Tools im Bankwesen, Einzelhandel und der Telekommunikation. Diese Anwendungen erfordern kontinuierliche Modellaktualisierungen, Echtzeit-Leistungsverfolgung und Versionskontrolle – wichtige Funktionen, die durch ModelOps bereitgestellt werden.
Das Gesundheitswesen dürfte das am schnellsten wachsende Segment sein, angetrieben durch die Nachfrage nach KI-basierten Diagnosetools, Patientenüberwachungssystemen und personalisierten Behandlungslösungen.
- Nach Vertikal
Der ModelOps-Markt ist vertikal in die Branchen BFSI, Einzelhandel & E-Commerce, Gesundheitswesen & Biowissenschaften, IT & Telekommunikation, Energie & Versorgung, Fertigung, Transport & Logistik und weitere unterteilt. Das BFSI-Segment dominierte mit dem größten Umsatzanteil von 21,9 % im Jahr 2024, da Banken und Finanzinstitute ModelOps zunehmend zur Verwaltung von Betrugserkennung, Kredit-Scoring-Modellen und Risikobewertungstools einsetzen. Die strenge Einhaltung gesetzlicher Vorschriften in diesem Sektor erfordert zusätzlich eine robuste Modell-Governance.
Für den Einzelhandels- und E-Commerce-Sektor wird ein starkes Wachstum prognostiziert, das durch den Bedarf an Echtzeit-Personalisierung, dynamischer Preisgestaltung und Nachfrageprognosen auf Basis von KI-Modellen angetrieben wird.
Welche Region hält den größten Anteil am ModelOps-Markt?
- Nordamerika dominierte den ModelOps-Markt mit dem größten Umsatzanteil von 42,14 % im Jahr 2024, was auf die weit verbreitete Einführung von KI/ML in den Bereichen Finanzwesen, Gesundheitswesen und Einzelhandel zurückzuführen ist. Die frühzeitige Einführung fortschrittlicher Analyseplattformen in der Region und der Fokus auf die MLOps-Reife beschleunigen die ModelOps-Implementierung.
- Eine starke Präsenz von KI-Innovatoren, gepaart mit erhöhten Investitionen in verantwortungsvolle KI und Einhaltung gesetzlicher Vorschriften, trägt zur Marktführerschaft in den Bereichen Modell-Governance und Lebenszyklusmanagement bei
- Darüber hinaus stärkt die Existenz großer ModelOps-Lösungsanbieter und die wachsende Nachfrage nach Cloud-nativer KI-Infrastruktur die Position Nordamerikas als weltweit führender Anbieter bei der Einführung von ModelOps.
US ModelOps Markteinblick
Der US-amerikanische ModelOps-Markt erwirtschaftete 2024 den größten Umsatzanteil in Nordamerika. Befeuert wurde er durch die Digitalisierung großer Unternehmen, regulatorische Vorgaben für erklärbare KI und die rasante Verbreitung von Modellen im Bank-, Versicherungs- und Gesundheitswesen. Strategische Allianzen zwischen Technologiegiganten und Startups sowie Investitionen in die sichere und skalierbare Bereitstellung von KI-Modellen beschleunigen die Nachfrage nach robusten ModelOps-Frameworks.
Europa ModelOps Markteinblick
Der europäische ModelOps-Markt wird im Prognosezeitraum voraussichtlich stetig wachsen, angetrieben durch die steigende Nachfrage nach ethischer KI und DSGVO-konformer Modellverwaltung. Finanzinstitute und öffentliche Einrichtungen in der Region setzen zunehmend ModelOps ein, um KI verantwortungsvoll zu operationalisieren. Darüber hinaus fördert die Betonung von Modellüberprüfbarkeit und Datenschutz die Marktakzeptanz in den Bereichen Fertigung, Recht und Regierung.
Einblicke in den britischen ModelOps-Markt
Der britische ModelOps-Markt wird voraussichtlich mit einer vielversprechenden jährlichen Wachstumsrate wachsen, unterstützt durch steigende KI-Investitionen in den Bereichen Fintech, Gesundheitswesen und Legal Tech. Der zunehmende Fokus auf Transparenz, Fairness und Modellüberwachung sowie staatlich geförderte KI-Frameworks drängen Unternehmen in Richtung skalierbarer und automatisierter ModelOps-Plattformen. Die starke KI-Forschungsgemeinschaft Großbritanniens trägt zusätzlich zur Innovation im Modell-Lebenszyklusmanagement bei.
Deutschland ModelOps Markteinblick
Der deutsche ModelOps-Markt wächst rasant, angetrieben durch die zunehmende Integration von KI in Fertigung, Automobilindustrie und industrieller Automatisierung. Deutschlands Schwerpunkt auf Präzision, technischer Exzellenz und Datenqualität unterstützt den Einsatz hochregulierter KI-Modelle. Industrie 4.0-Initiativen und die Entwicklung intelligenter Fabriken steigern die Nachfrage nach durchgängigen ModelOps-Lösungen zusätzlich.
Welche Region ist die am schnellsten wachsende Region im ModelOps-Markt?
Der ModelOps-Markt im asiatisch-pazifischen Raum wird voraussichtlich von 2025 bis 2032 mit einer durchschnittlichen jährlichen Wachstumsrate von 12,52 % wachsen. Dies wird durch den zunehmenden Einsatz von KI im Kundenservice, der Betrugserkennung und in Smart Cities vorangetrieben. Staatliche Programme zur digitalen Transformation in China, Indien und den ASEAN-Ländern sowie der Bedarf an skalierbarer KI-Implementierung treiben das Marktwachstum voran. Der Ausbau von Cloud-Diensten und lokalen KI-Talenten macht ModelOps-Lösungen in der Region zudem zugänglicher.
Japan ModelOps Markteinblick
Der japanische ModelOps-Markt verzeichnet eine starke Dynamik in den Bereichen Robotik, intelligente Fertigung und Finanzdienstleistungen. Japans Schwerpunkt auf Automatisierung und KI-Ethik schafft eine Nachfrage nach erklärbaren, zuverlässigen und kontinuierlich überwachten Modellen. ModelOps entwickelt sich zu einem wichtigen Instrument auf Japans Weg hin zu autonomen Systemen und präzisionsbasierten KI-Anwendungen.
China ModelOps Markteinblick
Der chinesische ModelOps-Markt hatte 2024 den größten Umsatzanteil im asiatisch-pazifischen Raum, gestützt durch die schnelle Digitalisierung, die starke Unterstützung der KI-Politik und den weit verbreiteten Einsatz im E-Commerce-, Finanz- und Regierungssektor. Inländische Technologieführer investieren aggressiv in KI-Lebenszyklus-Tools, um Produktionsmodelle zu skalieren. Chinas Fokus auf KI-Souveränität und regulatorische Rahmenbedingungen fördert die Einführung von ModelOps in allen Sektoren weiter.
Welches sind die Top-Unternehmen im ModelOps-Markt?
Die ModelOps-Branche wird hauptsächlich von etablierten Unternehmen angeführt, darunter:
- IBM (USA)
- Google (USA)
- Oracle (USA)
- SAS Institute (USA)
- AWS (USA)
- Teradata (USA)
- Palantir (USA)
- Veritone (USA)
- Altair (USA)
- c3.ai (USA)
- TIBCO (USA)
- Databricks (USA)
- Giggso (USA)
- Verta (USA)
- ModelOp (USA)
- Comet ML (USA)
- Superwise (Israel)
- Offensichtlich KI (USA)
- Minitab (USA)
- Seldon (Großbritannien)
- Innominds (USA)
- Datatron (USA)
- Domino Data Lab (USA)
- Arthur (USA)
- Gewichte und Vorurteile (USA)
- Xenonstack (USA)
- Cnvrg.io (Israel)
- DataKitchen (USA)
- Haisten AI (USA)
- Sparkling Logic (USA)
- LeewayHertz (USA)
Was sind die jüngsten Entwicklungen auf dem globalen ModelOps-Markt?
- Im Juli 2024 kooperierte Teradata, ein führender Anbieter von Cloud-Analyseplattformen, mit DataRobot, Inc., einem führenden Anbieter offener KI-Plattformen, um die KI-Plattform von DataRobot mit ClearScape Analytics und VantageCloud von Teradata zu integrieren. Diese Integration soll Unternehmen mehr Flexibilität und erweiterte Möglichkeiten für die Entwicklung und Skalierung sicherer, effizienter KI-Modelle bieten. Die Partnerschaft soll KI-gesteuerte Entscheidungsfindung und betriebliche Effizienz branchenübergreifend beschleunigen.
- Im Mai 2024 stellte Microsoft GPT-4o, das neueste multimodale Modell von OpenAI, auf Azure AI vor. Es umfasst Text-, Bild- und Audiofunktionen für fortschrittliche generative und dialogorientierte KI. Dieses neue Modell ist als Vorschau über den Azure OpenAI Service verfügbar und unterstützt sowohl Text- als auch Bildeingaben. Diese Einführung erweitert das KI-Angebot von Microsoft und macht hochmoderne generative KI für Entwickler und Unternehmen zugänglicher.
- Im Mai 2024 stellte Google Cloud seinen Dienst „Generative AI Ops“ vor, der Unternehmen dabei unterstützen soll, ihre generativen KI-Prototypen in produktionsreife Lösungen zu überführen. Dieser über Google Cloud Consulting und sein Partner-Ökosystem verfügbare Dienst unterstützt kritische Aspekte wie Sicherheit, Modelloptimierung, Feedback-Integration und Leistungsoptimierung. Diese Initiative unterstreicht das Engagement von Google Cloud, Unternehmen bei der verantwortungsvollen und effektiven Skalierung von KI-Innovationen zu unterstützen.
SKU-
Erhalten Sie Online-Zugriff auf den Bericht zur weltweit ersten Market Intelligence Cloud
- Interaktives Datenanalyse-Dashboard
- Unternehmensanalyse-Dashboard für Chancen mit hohem Wachstumspotenzial
- Zugriff für Research-Analysten für Anpassungen und Abfragen
- Konkurrenzanalyse mit interaktivem Dashboard
- Aktuelle Nachrichten, Updates und Trendanalyse
- Nutzen Sie die Leistungsfähigkeit der Benchmark-Analyse für eine umfassende Konkurrenzverfolgung
Forschungsmethodik
Die Datenerfassung und Basisjahresanalyse werden mithilfe von Datenerfassungsmodulen mit großen Stichprobengrößen durchgeführt. Die Phase umfasst das Erhalten von Marktinformationen oder verwandten Daten aus verschiedenen Quellen und Strategien. Sie umfasst die Prüfung und Planung aller aus der Vergangenheit im Voraus erfassten Daten. Sie umfasst auch die Prüfung von Informationsinkonsistenzen, die in verschiedenen Informationsquellen auftreten. Die Marktdaten werden mithilfe von marktstatistischen und kohärenten Modellen analysiert und geschätzt. Darüber hinaus sind Marktanteilsanalyse und Schlüsseltrendanalyse die wichtigsten Erfolgsfaktoren im Marktbericht. Um mehr zu erfahren, fordern Sie bitte einen Analystenanruf an oder geben Sie Ihre Anfrage ein.
Die wichtigste Forschungsmethodik, die vom DBMR-Forschungsteam verwendet wird, ist die Datentriangulation, die Data Mining, die Analyse der Auswirkungen von Datenvariablen auf den Markt und die primäre (Branchenexperten-)Validierung umfasst. Zu den Datenmodellen gehören ein Lieferantenpositionierungsraster, eine Marktzeitlinienanalyse, ein Marktüberblick und -leitfaden, ein Firmenpositionierungsraster, eine Patentanalyse, eine Preisanalyse, eine Firmenmarktanteilsanalyse, Messstandards, eine globale versus eine regionale und Lieferantenanteilsanalyse. Um mehr über die Forschungsmethodik zu erfahren, senden Sie eine Anfrage an unsere Branchenexperten.
Anpassung möglich
Data Bridge Market Research ist ein führendes Unternehmen in der fortgeschrittenen formativen Forschung. Wir sind stolz darauf, unseren bestehenden und neuen Kunden Daten und Analysen zu bieten, die zu ihren Zielen passen. Der Bericht kann angepasst werden, um Preistrendanalysen von Zielmarken, Marktverständnis für zusätzliche Länder (fordern Sie die Länderliste an), Daten zu klinischen Studienergebnissen, Literaturübersicht, Analysen des Marktes für aufgearbeitete Produkte und Produktbasis einzuschließen. Marktanalysen von Zielkonkurrenten können von technologiebasierten Analysen bis hin zu Marktportfoliostrategien analysiert werden. Wir können so viele Wettbewerber hinzufügen, wie Sie Daten in dem von Ihnen gewünschten Format und Datenstil benötigen. Unser Analystenteam kann Ihnen auch Daten in groben Excel-Rohdateien und Pivot-Tabellen (Fact Book) bereitstellen oder Sie bei der Erstellung von Präsentationen aus den im Bericht verfügbaren Datensätzen unterstützen.

