Mercado global de inteligencia artificial en la agricultura: tendencias de la industria y pronóstico hasta 2031

Solicitud de índiceSolicitud de índice Hable con el analistaHable con el analista Comprar ahoraComprar ahora Consultar antes de comprarConsultar antes Informe de muestra gratuitoInforme de muestra gratuito

Mercado global de inteligencia artificial en la agricultura: tendencias de la industria y pronóstico hasta 2031

  • ICT
  • Upcoming Report
  • Feb 2025
  • Global
  • 350 Páginas
  • Número de tablas: 220
  • Número de figuras: 60

Global Ai Agriculture Market

Tamaño del mercado en miles de millones de dólares

Tasa de crecimiento anual compuesta (CAGR) :  % Diagram

Chart Image USD 2.08 Billion USD 10.49 Billion 2025 2032
Diagram Período de pronóstico
2026 –2032
Diagram Tamaño del mercado (año base)
USD 2.08 Billion
Diagram Tamaño del mercado (año de pronóstico)
USD 10.49 Billion
Diagram Tasa de crecimiento anual compuesta (CAGR)
%
Diagram Jugadoras de los principales mercados
  • Dummy1
  • Dummy2
  • Dummy3
  • Dummy4
  • Dummy5

Mercado global de inteligencia artificial en la agricultura, por oferta (hardware, software y servicios), tecnología [aprendizaje automático (ML), visión artificial, procesamiento del lenguaje natural (NLP), robótica y automatización, y otros], aplicación (agricultura de precisión, monitoreo de ganado, pronóstico del tiempo, manejo del suelo, monitoreo de la salud de los cultivos, optimización de la cadena de suministro y otros), modo de implementación (en las instalaciones y en la nube), usuario final (granjas, empresas de tecnología agrícola, empresas agroquímicas, institutos de investigación y otros) - Tendencias de la industria y pronóstico hasta 2031.

Inteligencia artificial (IA) en el mercado agrícola

Análisis y tamaño del mercado de inteligencia artificial en agricultura

El mercado global de inteligencia artificial en la agricultura está preparado para un crecimiento sustancial, impulsado por varios factores clave. El principal impulsor es la importante reducción de costos que ofrecen las soluciones TEM, que atrae a las empresas que buscan optimizar sus gastos de telecomunicaciones. La creciente adopción de teléfonos móviles y otros dispositivos portátiles alimenta aún más la demanda de soluciones de gestión de gastos efectivas. TEM proporciona una transparencia de gastos fundamental, lo que permite a las organizaciones comprender y controlar mejor sus gastos de telecomunicaciones. Además, el auge de IoT y las aplicaciones basadas en la nube ha llevado a una mayor demanda de soluciones TEM, ya que estas tecnologías introducen nuevas complejidades en la gestión de gastos de telecomunicaciones. Sin embargo, el mercado enfrenta restricciones, en particular el desafío de cumplir con diferentes regulaciones de telecomunicaciones y requisitos de cumplimiento en diferentes regiones, lo que complica la implementación y la gestión. A pesar de estos desafíos, existen considerables oportunidades de crecimiento. La tecnología de automatización para la gestión de gastos de telecomunicaciones presenta una oportunidad significativa, al igual que la subcontratación de soluciones TEM, que puede ofrecer eficiencia de costos y experiencia.

Inteligencia artificial en el mercado agrícolaInteligencia artificial en el mercado agrícola

Data Bridge Market Research analiza que se espera que el mercado global de inteligencia artificial en la agricultura alcance un valor de USD 8.5 mil millones para 2031, con una CAGR del 22,4% durante el período de pronóstico. El informe del mercado global de inteligencia artificial en la agricultura también cubre de manera integral el análisis de precios, el análisis de patentes y los avances tecnológicos.

Métrica del informe

Detalles

Período de pronóstico

2024 a 2031

Año base

2023

Años históricos

2022

Unidades cuantitativas

Ingresos en miles de millones de USD

Segmentos cubiertos

 Al ofrecer (hardware, software y servicios), tecnología [aprendizaje automático (ML), visión artificial , procesamiento del lenguaje natural (NLP) , robótica y automatización, y otros), aplicación ( agricultura de precisión , monitoreo de ganado , pronóstico del tiempo, manejo del suelo, monitoreo de la salud de los cultivos, optimización de la cadena de suministro y otros), modo de implementación (en las instalaciones y en la nube), usuario final (granjas, empresas de tecnología agrícola, empresas agroquímicas, institutos de investigación, otros)

Países cubiertos

U.S., Canada and Mexico, Germany, France, U.K., Netherlands, Switzerland, Belgium, Russia, Italy, Spain, Turkey, rest of Europe, China, Japan, India, South Korea, Singapore, Malaysia, Australia, Thailand, Indonesia, Philippines, rest of Asia-Pacific, Saudi Arabia, U.A.E, South Africa, Egypt, Israel, rest of Middle East and Africa, Brazil, Argentina and rest of South America

Market Players Covered

Deere & Company, IBM, Microsoft, Google, OpenAI, Open Text Corporation, ClimateAi,  AgEagle Aerial Systems Inc., CNH Industrial N.V., AGCO Corporation, KUBOTA Corporation, YANMAR HOLDINGS CO., LTD., DeLaval, Lely, Raven Industries, Inc., Gamaya, Bayer AG, VALMONT INDUSTRIES, INC., Cisco Systems, Inc., Oracle, Harvest CROO Robotics LLC, ADM, SYNGENTA GLOBAL, Corteva, and Bowery Farming Inc. among others

Market Definition

The global artificial intelligence in agriculture market encompasses technologies and solutions that leverage AI to enhance agricultural practices. This includes machine learning, computer vision, and robotics to optimize crop management, precision farming, and resource allocation. The market covers AI-driven tools for data analysis, autonomous machinery, and predictive analytics aimed at increasing efficiency, yield, and sustainability in agricultural operations. It serves a broad range of applications including crop monitoring, soil management, pest control, and supply chain optimization.

Global Artificial Intelligence in Agriculture Market Dynamics

This section deals with understanding the market drivers, advantages, opportunities, restraints, and challenges. All of this is discussed in detail below:

Drivers

  • Increasing Crop Monitoring and Yield Prediction Accuracy

Artificial Intelligence (AI) in agriculture enhances crop monitoring and yield prediction accuracy. By leveraging machine learning algorithms and data analytics, AI can analyze vast amounts of data from various sources, such as satellite imagery, soil sensors, and weather forecasts. This enables farmers to monitor crop health, identify pest infestations, and predict yields more accurately. Consequently, AI-driven insights help optimize resource allocation, improve decision-making, and increase overall agricultural productivity.

For instance,

  • In July 2021, according to the blog published by Gramener, predicting crop yield using machine learning and AI became increasingly relevant. The article discussed how spatial analysis and IoT devices enhanced crop monitoring and yield prediction. AI and machine learning models utilizing satellite imagery and climate data, improved accuracy in predicting crop yields by assessing soil conditions and weather patterns. The use of these technologies benefited agricultural producers by enabling remote monitoring, efficient resource mapping, and predictive analytics, which facilitated better decision-making and planning. This advancement supports more effective crop management

Increasing Implementation of Better Farming Techniques with AI

Increasing the implementation of better farming techniques with AI involves optimizing the use of inputs such as water, fertilizers, and pesticides. AI-driven solutions enable precise management of these resources, ensuring they are applied efficiently and only where needed. This reduces costs and enhances productivity by minimizing waste and maximizing crop yields, ultimately leading to more sustainable and profitable farming practices.

For instance,

  • In January 2024, according to an article published by Intellias, AI significantly impacted agriculture by enhancing farming techniques. AI enabled precise management of water, fertilizers, and pesticides, reducing costs and boosting productivity. Automated systems optimized irrigation and fertilizer application, leading to better crop yields and resource efficiency. These advancements supported more sustainable and profitable farming practices, ultimately benefiting farmers through improved yields and cost savings

Inteligencia artificial en el mercado agrícola

Opportunity

  • Automation Technology for Telecom Expense Management

Automation technology for Telecom Expense Management (TEM) streamlines processes, enhances accuracy, and reduces costs. By leveraging automated tools and software, telecom operators and businesses efficiently manage invoices, track expenses, and analyse usage patterns in real-time. This technology improves transparency, control, and enables proactive decision-making based on data-driven insights. Moreover, automation minimizes human error, ensures compliance with regulatory requirements, and optimizes resource allocation, transforming TEM into a strategic asset

For instance,

  • In July 2022, according to an article published by Brightfin, switching to an automated telecom expense management system brought several benefits. First, it significantly reduced the number of helpdesk tickets related to telecom issues, freeing up IT resources. This automation also saved employees' time by handling routine tasks like invoice processing and expense management, allowing them to focus on more critical projects. Furthermore, automation reduced human errors, ensuring consistency and efficiency in operations. Finally, the system provided valuable data insights and helped lower costs through streamlined telecom management processes
  • According to an article published by the PAG, automation is transforming telecom expense management. It has streamlined tasks such as monitoring usage and reconciling invoices, particularly beneficial for hospitals and healthcare organizations. Automated solutions reduce the time and effort spent on audits, identifying significant savings by optimizing equipment usage and telecom contracts

Restraint/Challenge

  • Persistent Data Privacy and Security Concerns

Despite the promising advancements in AI for agriculture, persistent data privacy and security concerns overshadow these benefits. As AI systems collect and analyse vast amounts of sensitive agricultural data, including crop yields, soil conditions, and farm operations, they expose farmers to significant risks. Unauthorized access and breaches of this data can lead to severe consequences, including loss of intellectual property, manipulation of sensitive information, and increased vulnerability to cyberattacks. These security issues undermine trust in AI technologies and hinder their widespread adoption.

For instance

  • In August 2023, according to blog published by ShardSecure, agriculture faced increasing data privacy and security concerns. Cyberattacks, such as the 2021 ransomware attack on JBS Foods, highlighted the sector's vulnerability. With precision farming generating vast amounts of data and the rise of IoT devices, the risks have amplified. The newly established Food and Agriculture Information Sharing and Analysis Center aimed to address these issues. However, many agribusinesses still struggle with data security, compliance, and protecting against AI-related threats. Improved security measures can benefit companies by safeguarding sensitive data and reducing the risk of costly disruptions

Post Covid-19 Impact on Global Artificial Intelligence in Agriculture Market

The post COVID-19 landscape has significantly impacted the global market. However, as the economy gradually recovers, there is an increased focus on infrastructure development, leading to a resurgence in projects. The industry is adapting to new norms with enhanced safety protocols and digital technologies to streamline processes. The demand for telecom services is rebounding as construction projects regain momentum, presenting opportunities for market players to contribute to the nation's infrastructure growth in the post-pandemic era.

Recent Developments

For instance,

  • In June 2024, TeeJet Technologies launched the FM9380-F75 electromagnetic flow meter, featuring innovative no-moving-parts design for maintenance-free operation, optimized performance across fluid conditions, and wide application compatibility, benefiting their precision farming product portfolio and enhancing operational efficiency
  • In November 2023, Kubota Corporation, showcased the Agri Robo KVT at Agritechnica marking a significant advancement in autonomous farming technology. This enhanced tractor addressed labour shortages, enhanced safety, and promoted efficient farming, benefiting Kubota with increased market competitiveness and innovation leadership

Global Artificial Intelligence in Agriculture Market Scope

El mercado de inteligencia artificial en la agricultura se divide en cinco segmentos importantes, que se basan en la oferta, la tecnología, la aplicación, el modo de implementación y el usuario final. El crecimiento entre estos segmentos le ayudará a analizar los segmentos de crecimiento reducido en las industrias y brindará a los usuarios una valiosa descripción general del mercado y conocimientos del mercado para ayudarlos a tomar decisiones estratégicas para identificar las principales aplicaciones del mercado.

Este informe de investigación clasifica el mercado global de inteligencia artificial en la agricultura en los siguientes segmentos:

OFRENDA

  • HARDWARE
  • SOFTWARE
  • SERVICIOS

En función de la oferta, el mercado está segmentado en hardware, software y servicios.

TECNOLOGÍA

  • APRENDIZAJE AUTOMÁTICO (ML)
  • VISIÓN POR COMPUTADORA
  • PROCESAMIENTO DEL LENGUAJE NATURAL (PNL)
  • ROBÓTICA Y AUTOMATIZACIÓN
  • OTROS

Sobre la base de la tecnología, el mercado está segmentado en aprendizaje automático (ML), visión artificial, procesamiento del lenguaje natural (NLP), robótica y automatización y otros.

SOLICITUD

  • AGRICULTURA DE PRECISIÓN
  • SEGUIMIENTO DEL GANADO
  • PREVISIÓN DEL TIEMPO
  • Manejo del suelo
  • SEGUIMIENTO DE LA SALUD DE LOS CULTIVOS
  • OPTIMIZACIÓN DE LA CADENA DE SUMINISTRO
  • OTROS

Sobre la base de la aplicación, el mercado está segmentado en agricultura de precisión, monitoreo de ganado, pronóstico del tiempo, manejo del suelo, monitoreo de la salud de los cultivos, optimización de la cadena de suministro y otros.

MODO DE DESPLIEGUE

  • NUBE
  • EN LAS INSTALACIONES

Según el modo de implementación, el mercado está segmentado en nube y local.

USUARIO FINAL

  • GRANJAS
  • EMPRESAS AGROTECNOLÓGICAS
  • EMPRESAS AGROQUIMICAS
  • INSTITUTOS DE INVESTIGACIÓN
  • OTROS

Según el usuario final, el mercado se segmenta en granjas, empresas de tecnología agropecuaria, empresas agroquímicas, institutos de investigación y otros.

Inteligencia artificial en el mercado agrícola

Mercado global de inteligencia artificial en agricultura

El mercado global de inteligencia artificial en la agricultura se divide en cinco segmentos notables, que se basan en la oferta, la tecnología, la aplicación, el modo de implementación y el usuario final. Los países cubiertos por el mercado global de Internet de las cosas (IOT) en la agricultura son EE. UU., Canadá y México en América del Norte, Alemania, Francia, Reino Unido, Países Bajos, Suiza, Bélgica, Rusia, Italia, España, Turquía, resto de Europa, China, Japón, India, Corea del Sur, Singapur, Malasia, Australia, Tailandia, Indonesia, Filipinas, resto de Asia-Pacífico, Arabia Saudita, Emiratos Árabes Unidos, Sudáfrica, Egipto, Israel, resto de Medio Oriente y África, Brasil, Argentina y resto de América del Sur.

En América del Norte, Estados Unidos es el país que más componentes de hardware ofrece. Asimismo, en Europa, el Reino Unido es el país que más avanza en el mercado gracias a su tecnología. En Asia-Pacífico, China es el país que más componentes de hardware fabrica en la región.

La sección de países del informe también proporciona factores individuales que impactan en el mercado y cambios en la regulación del mercado que afectan las tendencias actuales y futuras del mercado. Los puntos de datos como el análisis de la cadena de valor aguas abajo y aguas arriba, las tendencias técnicas y el análisis de las cinco fuerzas de Porter, los estudios de casos son algunos de los indicadores utilizados para pronosticar el escenario del mercado para países individuales. Además, la presencia y disponibilidad de marcas de APAC y sus desafíos enfrentados debido a la competencia grande o escasa de las marcas locales y nacionales, el impacto de los aranceles nacionales y las rutas comerciales se consideran al proporcionar un análisis de pronóstico de los datos del país.   

Inteligencia artificial en el mercado agrícola

Análisis del panorama competitivo y la cuota de mercado global de la inteligencia artificial en la agricultura

El panorama competitivo del mercado global de inteligencia artificial en la agricultura proporciona detalles del competidor. Los detalles incluidos son una descripción general de la empresa, las finanzas de la empresa, los ingresos generados, el potencial de mercado, la inversión en investigación y desarrollo, las nuevas iniciativas de mercado, la presencia en APAC y SEA, los sitios e instalaciones de producción, las capacidades de producción, las fortalezas y debilidades de la empresa, el lanzamiento de productos, la amplitud y la extensión de los productos, el dominio de las aplicaciones. Los puntos de datos anteriores proporcionados solo están relacionados con el enfoque de las empresas relacionado con el mercado global de inteligencia artificial en la agricultura. Algunos de los principales actores que operan en el mercado global de inteligencia artificial en la agricultura son: Open Text Corporation, OpenAI, VALMONT INDUSTRIES, INC., AGCO Corporation e IBM, entre otros.


SKU-

Obtenga acceso en línea al informe sobre la primera nube de inteligencia de mercado del mundo

  • Panel de análisis de datos interactivo
  • Panel de análisis de empresas para oportunidades con alto potencial de crecimiento
  • Acceso de analista de investigación para personalización y consultas
  • Análisis de la competencia con panel interactivo
  • Últimas noticias, actualizaciones y análisis de tendencias
  • Aproveche el poder del análisis de referencia para un seguimiento integral de la competencia
Solicitud de demostración

Metodología de investigación

La recopilación de datos y el análisis del año base se realizan utilizando módulos de recopilación de datos con muestras de gran tamaño. La etapa incluye la obtención de información de mercado o datos relacionados a través de varias fuentes y estrategias. Incluye el examen y la planificación de todos los datos adquiridos del pasado con antelación. Asimismo, abarca el examen de las inconsistencias de información observadas en diferentes fuentes de información. Los datos de mercado se analizan y estiman utilizando modelos estadísticos y coherentes de mercado. Además, el análisis de la participación de mercado y el análisis de tendencias clave son los principales factores de éxito en el informe de mercado. Para obtener más información, solicite una llamada de un analista o envíe su consulta.

La metodología de investigación clave utilizada por el equipo de investigación de DBMR es la triangulación de datos, que implica la extracción de datos, el análisis del impacto de las variables de datos en el mercado y la validación primaria (experto en la industria). Los modelos de datos incluyen cuadrícula de posicionamiento de proveedores, análisis de línea de tiempo de mercado, descripción general y guía del mercado, cuadrícula de posicionamiento de la empresa, análisis de patentes, análisis de precios, análisis de participación de mercado de la empresa, estándares de medición, análisis global versus regional y de participación de proveedores. Para obtener más información sobre la metodología de investigación, envíe una consulta para hablar con nuestros expertos de la industria.

Personalización disponible

Data Bridge Market Research es líder en investigación formativa avanzada. Nos enorgullecemos de brindar servicios a nuestros clientes existentes y nuevos con datos y análisis que coinciden y se adaptan a sus objetivos. El informe se puede personalizar para incluir análisis de tendencias de precios de marcas objetivo, comprensión del mercado de países adicionales (solicite la lista de países), datos de resultados de ensayos clínicos, revisión de literatura, análisis de mercado renovado y base de productos. El análisis de mercado de competidores objetivo se puede analizar desde análisis basados ​​en tecnología hasta estrategias de cartera de mercado. Podemos agregar tantos competidores sobre los que necesite datos en el formato y estilo de datos que esté buscando. Nuestro equipo de analistas también puede proporcionarle datos en archivos de Excel sin procesar, tablas dinámicas (libro de datos) o puede ayudarlo a crear presentaciones a partir de los conjuntos de datos disponibles en el informe.

Preguntas frecuentes

Increasing crop monitoring and yield prediction accuracy, increasing implementation of better farming techniques with ai, boosting agricultural efficiency with data-driven decisions, and improving pest and disease management with ai will drive the market the forecast period.
Open Text Corporation (Canada), VALMONT INDUSTRIES, INC. (U.S.), OpenAI (U.S.), Agco corporation (U.S.), IBM (U.S.) among others.
U.S., Canada, Italy, France, Germany, Spain, Poland, Netherlands, Romania, Denmark, Belgium, Greece, Hungary, Portugal, Ireland, Austria, Czechia, Sweden, Bulgaria, Finland, Croatia, Lithuania, Slovakia, Latvia, Slovenia, Cyprus, Estonia, Luxembourg, Malta and Non-EU Europe. China, Australia, Japan, South Korea, India, New Zealand, Taiwan, Singapore, Malaysia, Thailand, Vietnam, Indonesia, Philippines, and rest of Asia-Pacific. Brazil, Argentina, Mexico, and rest of Latin America. Saudi Arabia, South Africa, Egypt, Bahrain, Oman, Israel, Kuwait, Qatar, U.A.E., and rest of Middle East and Africa are the countries covered in the market.
Testimonial