Global Ai Agriculture Market
Tamaño del mercado en miles de millones de dólares
Tasa de crecimiento anual compuesta (CAGR) :
%
USD
2.08 Billion
USD
10.49 Billion
2025
2032
| 2026 –2032 | |
| USD 2.08 Billion | |
| USD 10.49 Billion | |
|
|
|
|
Mercado global de inteligencia artificial en la agricultura, por oferta (hardware, software y servicios), tecnología (aprendizaje automático (ML), visión artificial, procesamiento del lenguaje natural (NLP), robótica y automatización, y otros), aplicación (agricultura de precisión, monitoreo de ganado, pronóstico del tiempo, manejo del suelo, monitoreo de la salud de los cultivos, optimización de la cadena de suministro y otros), modo de implementación (en las instalaciones y en la nube), usuario final (granjas, empresas de tecnología agrícola, empresas agroquímicas, institutos de investigación y otros) - Tendencias de la industria y pronóstico hasta 2032
Análisis y tamaño del mercado de inteligencia artificial en agricultura
El mercado global de inteligencia artificial en la agricultura está preparado para un crecimiento sustancial, impulsado por varios factores clave. El principal impulsor es la importante reducción de costos que ofrecen las soluciones TEM, que atrae a las empresas que buscan optimizar sus gastos de telecomunicaciones. La creciente adopción de teléfonos móviles y otros dispositivos portátiles alimenta aún más la demanda de soluciones de gestión de gastos efectivas. TEM proporciona una transparencia de gastos fundamental, lo que permite a las organizaciones comprender y controlar mejor sus gastos de telecomunicaciones. Además, el auge de IoT y las aplicaciones basadas en la nube ha llevado a una mayor demanda de soluciones TEM, ya que estas tecnologías introducen nuevas complejidades en la gestión de gastos de telecomunicaciones. Sin embargo, el mercado enfrenta restricciones, en particular el desafío de cumplir con diferentes regulaciones de telecomunicaciones y requisitos de cumplimiento en diferentes regiones, lo que complica la implementación y la gestión. A pesar de estos desafíos, existen considerables oportunidades de crecimiento. La tecnología de automatización para la gestión de gastos de telecomunicaciones presenta una oportunidad significativa, al igual que la subcontratación de soluciones TEM, que puede ofrecer eficiencia de costos y experiencia.
Data Bridge Market Research analiza que se espera que el mercado global de inteligencia artificial en la agricultura alcance un valor de USD 10,49 mil millones para 2032 y 2,08 mil millones en 2025 a una CAGR del 22,39 % durante el período de pronóstico. El informe del mercado global de inteligencia artificial en la agricultura también cubre de manera integral el análisis de precios, el análisis de patentes y los avances tecnológicos.
|
Métrica del informe |
Detalles |
|
Período de pronóstico |
2025 a 2032 |
|
Año base |
2024 |
|
Años históricos |
2023 (2018-2022) |
|
Unidades cuantitativas |
Ingresos en miles de millones de dólares |
|
Segmentos cubiertos |
Al ofrecer (hardware, software y servicios), tecnología [aprendizaje automático (ML), visión artificial , procesamiento del lenguaje natural (NLP) , robótica y automatización, y otros), aplicación ( agricultura de precisión , monitoreo de ganado , pronóstico del tiempo, manejo del suelo, monitoreo de la salud de los cultivos, optimización de la cadena de suministro y otros), modo de implementación (en las instalaciones y en la nube), usuario final (granjas, empresas de tecnología agrícola, empresas agroquímicas, institutos de investigación, otros) |
|
Países cubiertos |
Estados Unidos, Canadá y México, Alemania, Francia, Reino Unido, Países Bajos, Suiza, Bélgica, Rusia, Italia, España, Turquía, resto de Europa, China, Japón, India, Corea del Sur, Singapur, Malasia, Australia, Tailandia, Indonesia, Filipinas, resto de Asia-Pacífico, Arabia Saudita, Emiratos Árabes Unidos, Sudáfrica, Egipto, Israel, resto de Oriente Medio y África, Brasil, Argentina y resto de Sudamérica. |
|
Actores del mercado cubiertos |
Entre otros, se encuentran Deere & Company, IBM, Microsoft, Google, OpenAI, Open Text Corporation, ClimateAi, AgEagle Aerial Systems Inc., CNH Industrial NV, AGCO Corporation, KUBOTA Corporation, YANMAR HOLDINGS CO., LTD., DeLaval, Lely, Raven Industries, Inc., Gamaya, Bayer AG, VALMONT INDUSTRIES, INC., Cisco Systems, Inc., Oracle, Harvest CROO Robotics LLC, ADM, SYNGENTA GLOBAL, Corteva y Bowery Farming Inc. |
Definición de mercado
El mercado global de inteligencia artificial en la agricultura abarca tecnologías y soluciones que aprovechan la IA para mejorar las prácticas agrícolas. Esto incluye el aprendizaje automático, la visión artificial y la robótica para optimizar la gestión de cultivos, la agricultura de precisión y la asignación de recursos. El mercado abarca herramientas impulsadas por IA para el análisis de datos, maquinaria autónoma y análisis predictivos destinados a aumentar la eficiencia, el rendimiento y la sostenibilidad en las operaciones agrícolas. Sirve para una amplia gama de aplicaciones, que incluyen el monitoreo de cultivos, la gestión del suelo, el control de plagas y la optimización de la cadena de suministro.
Dinámica del mercado global de inteligencia artificial en la agricultura
Conductores
- Aumento de la precisión en la predicción del rendimiento y el seguimiento de los cultivos
La inteligencia artificial (IA) en la agricultura mejora el monitoreo de los cultivos y la precisión de las predicciones de rendimiento. Al aprovechar los algoritmos de aprendizaje automático y el análisis de datos, la IA puede analizar grandes cantidades de datos de diversas fuentes, como imágenes satelitales, sensores de suelo y pronósticos meteorológicos. Esto permite a los agricultores monitorear la salud de los cultivos, identificar plagas y predecir los rendimientos con mayor precisión. En consecuencia, los conocimientos impulsados por la IA ayudan a optimizar la asignación de recursos, mejorar la toma de decisiones y aumentar la productividad agrícola general.
Por ejemplo,
- En julio de 2021, según el blog publicado por Gramener, la predicción del rendimiento de los cultivos mediante el aprendizaje automático y la IA adquirió cada vez mayor relevancia. El artículo analizaba cómo el análisis espacial y los dispositivos de IoT mejoraron el seguimiento de los cultivos y la predicción del rendimiento. Los modelos de IA y aprendizaje automático que utilizan imágenes satelitales y datos climáticos mejoraron la precisión en la predicción del rendimiento de los cultivos mediante la evaluación de las condiciones del suelo y los patrones climáticos. El uso de estas tecnologías benefició a los productores agrícolas al permitir el seguimiento remoto, el mapeo eficiente de los recursos y el análisis predictivo, lo que facilitó una mejor toma de decisiones y planificación. Este avance favorece una gestión más eficaz de los cultivos.
Aumentar la implementación de mejores técnicas agrícolas con IA
Para aumentar la implementación de mejores técnicas agrícolas con IA es necesario optimizar el uso de insumos como agua, fertilizantes y pesticidas. Las soluciones impulsadas por IA permiten una gestión precisa de estos recursos, lo que garantiza que se apliquen de manera eficiente y solo donde sea necesario. Esto reduce los costos y mejora la productividad al minimizar el desperdicio y maximizar el rendimiento de los cultivos, lo que en última instancia conduce a prácticas agrícolas más sostenibles y rentables.
Por ejemplo,
- En enero de 2024, según un artículo publicado por Intellias, la IA tuvo un impacto significativo en la agricultura al mejorar las técnicas agrícolas. La IA permitió una gestión precisa del agua, los fertilizantes y los pesticidas, lo que redujo los costos y aumentó la productividad. Los sistemas automatizados optimizaron el riego y la aplicación de fertilizantes, lo que generó mejores rendimientos de los cultivos y eficiencia de los recursos. Estos avances respaldaron prácticas agrícolas más sostenibles y rentables, lo que en última instancia benefició a los agricultores a través de mejores rendimientos y ahorros de costos.
Oportunidad
- Tecnología de automatización para la gestión de gastos de telecomunicaciones
La tecnología de automatización para la gestión de gastos de telecomunicaciones (TEM) optimiza los procesos, mejora la precisión y reduce los costos. Al aprovechar las herramientas y el software automatizados, los operadores y las empresas de telecomunicaciones administran de manera eficiente las facturas, rastrean los gastos y analizan los patrones de uso en tiempo real. Esta tecnología mejora la transparencia y el control, y permite una toma de decisiones proactiva basada en información basada en datos. Además, la automatización minimiza el error humano, garantiza el cumplimiento de los requisitos normativos y optimiza la asignación de recursos, transformando la TEM en un activo estratégico.
Por ejemplo,
- En julio de 2022, según un artículo publicado por Brightfin, el cambio a un sistema automatizado de gestión de gastos de telecomunicaciones trajo consigo varios beneficios. En primer lugar, redujo significativamente la cantidad de tickets de soporte técnico relacionados con problemas de telecomunicaciones, lo que liberó recursos de TI. Esta automatización también ahorró tiempo a los empleados al encargarse de tareas rutinarias como el procesamiento de facturas y la gestión de gastos, lo que les permitió centrarse en proyectos más críticos. Además, la automatización redujo los errores humanos, lo que garantizó la coherencia y la eficiencia de las operaciones. Por último, el sistema proporcionó información valiosa y ayudó a reducir los costos mediante la optimización de los procesos de gestión de las telecomunicaciones.
- Según un artículo publicado por el PAG, la automatización está transformando la gestión de gastos de telecomunicaciones. Ha agilizado tareas como el control del uso y la conciliación de facturas, lo que resulta especialmente beneficioso para hospitales y organizaciones sanitarias. Las soluciones automatizadas reducen el tiempo y el esfuerzo dedicados a las auditorías, lo que permite identificar ahorros significativos al optimizar el uso de los equipos y los contratos de telecomunicaciones.
Restricción/Desafío
- Preocupaciones persistentes sobre la privacidad y seguridad de los datos
A pesar de los prometedores avances de la IA para la agricultura, las preocupaciones persistentes sobre la privacidad y la seguridad de los datos eclipsan estos beneficios. A medida que los sistemas de IA recopilan y analizan grandes cantidades de datos agrícolas sensibles, incluidos los rendimientos de los cultivos, las condiciones del suelo y las operaciones agrícolas, exponen a los agricultores a riesgos significativos. El acceso no autorizado y las violaciones de estos datos pueden tener graves consecuencias, como la pérdida de propiedad intelectual, la manipulación de información sensible y una mayor vulnerabilidad a los ciberataques. Estos problemas de seguridad socavan la confianza en las tecnologías de IA y obstaculizan su adopción generalizada.
Por ejemplo
- En agosto de 2023, según el blog publicado por ShardSecure, la agricultura se enfrentó a crecientes preocupaciones sobre la privacidad y seguridad de los datos. Los ciberataques, como el ataque de ransomware de 2021 a JBS Foods, pusieron de relieve la vulnerabilidad del sector. Con la agricultura de precisión que genera enormes cantidades de datos y el auge de los dispositivos IoT, los riesgos se han amplificado. El recién creado Centro de análisis e intercambio de información sobre alimentos y agricultura tenía como objetivo abordar estos problemas. Sin embargo, muchas empresas agroindustriales aún tienen dificultades con la seguridad de los datos, el cumplimiento normativo y la protección contra las amenazas relacionadas con la IA. La mejora de las medidas de seguridad puede beneficiar a las empresas al salvaguardar los datos confidenciales y reducir el riesgo de interrupciones costosas.
Impacto posterior al Covid-19 en el mercado global de inteligencia artificial en agricultura
El panorama posterior a la COVID-19 ha afectado significativamente al mercado global. Sin embargo, a medida que la economía se recupera gradualmente, hay un mayor enfoque en el desarrollo de infraestructura, lo que lleva a un resurgimiento de los proyectos. La industria se está adaptando a las nuevas normas con protocolos de seguridad mejorados y tecnologías digitales para agilizar los procesos. La demanda de servicios de telecomunicaciones se está recuperando a medida que los proyectos de construcción recuperan impulso, lo que presenta oportunidades para que los actores del mercado contribuyan al crecimiento de la infraestructura del país en la era pospandémica.
Acontecimientos recientes
Por ejemplo,
- En junio de 2024, TeeJet Technologies lanzó el medidor de flujo electromagnético FM9380-F75, que presenta un diseño innovador sin piezas móviles para un funcionamiento sin mantenimiento, un rendimiento optimizado en todas las condiciones de fluidos y una amplia compatibilidad de aplicaciones, lo que beneficia su cartera de productos de agricultura de precisión y mejora la eficiencia operativa.
- En noviembre de 2023, Kubota Corporation presentó el Agri Robo KVT en Agritechnica, lo que marca un avance significativo en la tecnología de agricultura autónoma. Este tractor mejorado abordó la escasez de mano de obra, mejoró la seguridad y promovió la agricultura eficiente, lo que benefició a Kubota con una mayor competitividad en el mercado y liderazgo en innovación.
Alcance del mercado global de inteligencia artificial en la agricultura
El mercado de inteligencia artificial en la agricultura se divide en cinco segmentos importantes, que se basan en la oferta, la tecnología, la aplicación, el modo de implementación y el usuario final. El crecimiento entre estos segmentos le ayudará a analizar los segmentos de crecimiento reducido en las industrias y brindará a los usuarios una valiosa descripción general del mercado y conocimientos del mercado para ayudarlos a tomar decisiones estratégicas para identificar las principales aplicaciones del mercado.
Este informe de investigación clasifica el mercado global de inteligencia artificial en la agricultura en los siguientes segmentos:
OFRENDA
- HARDWARE
- SOFTWARE
- SERVICIOS
En función de la oferta, el mercado está segmentado en hardware, software y servicios.
TECNOLOGÍA
- APRENDIZAJE AUTOMÁTICO (ML)
- VISIÓN POR COMPUTADORA
- PROCESAMIENTO DEL LENGUAJE NATURAL (PNL)
- ROBÓTICA Y AUTOMATIZACIÓN
- OTROS
Sobre la base de la tecnología, el mercado está segmentado en aprendizaje automático (ML), visión artificial, procesamiento del lenguaje natural (NLP), robótica y automatización y otros.
SOLICITUD
- AGRICULTURA DE PRECISIÓN
- SEGUIMIENTO DEL GANADO
- PREVISIÓN DEL TIEMPO
- Manejo del suelo
- SEGUIMIENTO DE LA SALUD DE LOS CULTIVOS
- OPTIMIZACIÓN DE LA CADENA DE SUMINISTRO
- OTROS
Sobre la base de la aplicación, el mercado está segmentado en agricultura de precisión, monitoreo de ganado, pronóstico del tiempo, manejo del suelo, monitoreo de la salud de los cultivos, optimización de la cadena de suministro y otros.
MODO DE DESPLIEGUE
- NUBE
- EN LAS INSTALACIONES
Según el modo de implementación, el mercado está segmentado en nube y local.
USUARIO FINAL
- GRANJAS
- EMPRESAS AGROTECNOLÓGICAS
- EMPRESAS AGROQUIMICAS
- INSTITUTOS DE INVESTIGACIÓN
- OTROS
Según el usuario final, el mercado se segmenta en granjas, empresas de tecnología agropecuaria, empresas agroquímicas, institutos de investigación y otros.
Mercado global de inteligencia artificial en agricultura
El mercado global de inteligencia artificial en la agricultura se divide en cinco segmentos notables, que se basan en la oferta, la tecnología, la aplicación, el modo de implementación y el usuario final. Los países cubiertos por el mercado global de Internet de las cosas (IOT) en la agricultura son EE. UU., Canadá y México en América del Norte, Alemania, Francia, Reino Unido, Países Bajos, Suiza, Bélgica, Rusia, Italia, España, Turquía, resto de Europa, China, Japón, India, Corea del Sur, Singapur, Malasia, Australia, Tailandia, Indonesia, Filipinas, resto de Asia-Pacífico, Arabia Saudita, Emiratos Árabes Unidos, Sudáfrica, Egipto, Israel, resto de Medio Oriente y África, Brasil, Argentina y resto de América del Sur.
En América del Norte, Estados Unidos es el país que más componentes de hardware ofrece. Asimismo, en Europa, el Reino Unido es el país que más avanza en el mercado gracias a su tecnología. En Asia-Pacífico, China es el país que más componentes de hardware fabrica en la región.
La sección de países del informe también proporciona factores individuales que impactan en el mercado y cambios en la regulación del mercado que afectan las tendencias actuales y futuras del mercado. Los puntos de datos como el análisis de la cadena de valor aguas abajo y aguas arriba, las tendencias técnicas y el análisis de las cinco fuerzas de Porter, los estudios de casos son algunos de los indicadores utilizados para pronosticar el escenario del mercado para países individuales. Además, la presencia y disponibilidad de marcas de APAC y sus desafíos enfrentados debido a la competencia grande o escasa de las marcas locales y nacionales, el impacto de los aranceles nacionales y las rutas comerciales se consideran al proporcionar un análisis de pronóstico de los datos del país.
Análisis del panorama competitivo y la cuota de mercado global de la inteligencia artificial en la agricultura
El panorama competitivo del mercado global de inteligencia artificial en la agricultura proporciona detalles del competidor. Los detalles incluidos son una descripción general de la empresa, las finanzas de la empresa, los ingresos generados, el potencial de mercado, la inversión en investigación y desarrollo, las nuevas iniciativas de mercado, la presencia en APAC y SEA, los sitios e instalaciones de producción, las capacidades de producción, las fortalezas y debilidades de la empresa, el lanzamiento de productos, la amplitud y la extensión de los productos, el dominio de las aplicaciones. Los puntos de datos anteriores proporcionados solo están relacionados con el enfoque de las empresas relacionado con el mercado global de inteligencia artificial en la agricultura. Algunos de los principales actores que operan en el mercado global de inteligencia artificial en la agricultura son: Open Text Corporation, OpenAI, VALMONT INDUSTRIES, INC., AGCO Corporation e IBM, entre otros.
SKU-
Obtenga acceso en línea al informe sobre la primera nube de inteligencia de mercado del mundo
- Panel de análisis de datos interactivo
- Panel de análisis de empresas para oportunidades con alto potencial de crecimiento
- Acceso de analista de investigación para personalización y consultas
- Análisis de la competencia con panel interactivo
- Últimas noticias, actualizaciones y análisis de tendencias
- Aproveche el poder del análisis de referencia para un seguimiento integral de la competencia
Metodología de investigación
La recopilación de datos y el análisis del año base se realizan utilizando módulos de recopilación de datos con muestras de gran tamaño. La etapa incluye la obtención de información de mercado o datos relacionados a través de varias fuentes y estrategias. Incluye el examen y la planificación de todos los datos adquiridos del pasado con antelación. Asimismo, abarca el examen de las inconsistencias de información observadas en diferentes fuentes de información. Los datos de mercado se analizan y estiman utilizando modelos estadísticos y coherentes de mercado. Además, el análisis de la participación de mercado y el análisis de tendencias clave son los principales factores de éxito en el informe de mercado. Para obtener más información, solicite una llamada de un analista o envíe su consulta.
La metodología de investigación clave utilizada por el equipo de investigación de DBMR es la triangulación de datos, que implica la extracción de datos, el análisis del impacto de las variables de datos en el mercado y la validación primaria (experto en la industria). Los modelos de datos incluyen cuadrícula de posicionamiento de proveedores, análisis de línea de tiempo de mercado, descripción general y guía del mercado, cuadrícula de posicionamiento de la empresa, análisis de patentes, análisis de precios, análisis de participación de mercado de la empresa, estándares de medición, análisis global versus regional y de participación de proveedores. Para obtener más información sobre la metodología de investigación, envíe una consulta para hablar con nuestros expertos de la industria.
Personalización disponible
Data Bridge Market Research es líder en investigación formativa avanzada. Nos enorgullecemos de brindar servicios a nuestros clientes existentes y nuevos con datos y análisis que coinciden y se adaptan a sus objetivos. El informe se puede personalizar para incluir análisis de tendencias de precios de marcas objetivo, comprensión del mercado de países adicionales (solicite la lista de países), datos de resultados de ensayos clínicos, revisión de literatura, análisis de mercado renovado y base de productos. El análisis de mercado de competidores objetivo se puede analizar desde análisis basados en tecnología hasta estrategias de cartera de mercado. Podemos agregar tantos competidores sobre los que necesite datos en el formato y estilo de datos que esté buscando. Nuestro equipo de analistas también puede proporcionarle datos en archivos de Excel sin procesar, tablas dinámicas (libro de datos) o puede ayudarlo a crear presentaciones a partir de los conjuntos de datos disponibles en el informe.

