Global Small Language Model Slm Market
Tamaño del mercado en miles de millones de dólares
Tasa de crecimiento anual compuesta (CAGR) :
%
USD
5.30 Billion
USD
26.70 Billion
2024
2032
| 2025 –2032 | |
| USD 5.30 Billion | |
| USD 26.70 Billion | |
|
|
|
|
Segmentación del mercado global de modelos de lenguaje pequeño (SLM), por tecnología (basada en aprendizaje profundo, aprendizaje automático y servicios), implementación (nube, local e híbrida), aplicación (aplicaciones de consumo, aplicaciones empresariales, atención médica, finanzas, comercio minorista, legal, fabricación y otras): tendencias de la industria y pronóstico hasta 2032
Tamaño del mercado de modelos de lenguaje pequeño (SLM)
- El tamaño del mercado global de modelos de lenguaje pequeño (SLM) se valoró en USD 5.3 mil millones en 2024 y se espera que alcance los USD 26.70 mil millones para 2032 , con una CAGR del 22,40% durante el período de pronóstico.
- El crecimiento del mercado está impulsado en gran medida por la creciente adopción de la automatización impulsada por IA y el procesamiento del lenguaje natural en todas las industrias, lo que genera una mayor eficiencia y mejores experiencias de usuario en el servicio al cliente, la creación de contenido y el análisis de datos.
- Además, la creciente demanda de aplicaciones personalizadas y sensibles al contexto en los sectores de la atención sanitaria, las finanzas, el comercio minorista y el derecho está estableciendo modelos de lenguaje pequeños como herramientas esenciales para la toma de decisiones inteligente y la optimización del flujo de trabajo.
Análisis del mercado del modelo de lenguaje pequeño (SLM)
- Los modelos de lenguaje pequeño (SLM), que brindan capacidades avanzadas de comprensión y generación de lenguaje natural, se están convirtiendo en componentes esenciales de las aplicaciones modernas impulsadas por IA en múltiples industrias, incluidos el servicio al cliente, la atención médica, las finanzas y el comercio minorista, debido a su capacidad para brindar interacciones personalizadas y conscientes del contexto y automatizar tareas lingüísticas complejas.
- La creciente demanda de SLM está impulsada principalmente por la rápida transformación digital, la creciente adopción de la automatización impulsada por IA y la creciente necesidad de soluciones eficientes y escalables que mejoren la experiencia del usuario y agilicen los procesos comerciales.
- América del Norte dominó el mercado de modelos de lenguaje pequeño (SLM) con una participación del 32,2 % en 2024, debido a la adopción generalizada de aplicaciones impulsadas por IA en todas las industrias y una fuerte inversión en investigación e infraestructura de IA avanzada.
- Se espera que Asia-Pacífico sea la región de más rápido crecimiento en el mercado de modelos de lenguaje pequeño (SLM) durante el período de pronóstico debido a la rápida digitalización, la expansión de la penetración de Internet y la creciente adopción de IA en China, Japón e India.
- El segmento basado en aprendizaje automático dominó el mercado con una cuota de mercado del 55,6 % en 2024, gracias a su versatilidad y rentabilidad para gestionar diversas tareas lingüísticas. Su adopción está en aumento en sectores que buscan soluciones escalables con una complejidad moderada y tiempos de implementación más rápidos. Los servicios, que abarcan consultoría, integración y soporte, desempeñan un papel crucial para facilitar la implementación y optimización de modelos lingüísticos pequeños, especialmente para empresas que carecen de experiencia interna en IA.
Alcance del informe y segmentación del mercado del modelo de lenguaje pequeño (SLM)
|
Atributos |
Perspectivas clave del mercado del modelo de lenguaje pequeño (SLM) |
|
Segmentos cubiertos |
|
|
Países cubiertos |
América del norte
Europa
Asia-Pacífico
Oriente Medio y África
Sudamerica
|
|
Actores clave del mercado |
|
|
Oportunidades de mercado |
|
|
Conjuntos de información de datos de valor añadido |
Además de los conocimientos del mercado, como el valor de mercado, la tasa de crecimiento, los segmentos del mercado, la cobertura geográfica, los actores del mercado y el escenario del mercado, el informe de mercado elaborado por el equipo de investigación de mercado de Data Bridge incluye un análisis en profundidad de expertos, análisis de importación/exportación, análisis de precios, análisis de consumo de producción y análisis pestle. |
Tendencias del mercado de modelos de lenguaje pequeño (SLM)
“Aumento de la implementación basada en la nube”:
- Una tendencia significativa y en aceleración en el mercado global de modelos de lenguaje pequeño (SLM) es el cambio creciente hacia la implementación basada en la nube, lo que permite un acceso escalable, flexible y rentable a las capacidades del lenguaje impulsadas por IA en todas las industrias.
- Por ejemplo, los modelos GPT de OpenAI y Vertex AI de Google ofrecen servicios de modelos de lenguaje pequeños alojados en la nube que permiten a las empresas integrar un procesamiento avanzado del lenguaje sin grandes inversiones en infraestructura local.
- La implementación en la nube facilita las actualizaciones continuas de los modelos, la integración perfecta con otros servicios en la nube y una colaboración más sencilla entre equipos, lo que mejora significativamente la accesibilidad y reduce el tiempo de comercialización de las aplicaciones de IA.
- Empresas como Microsoft Azure y Amazon Web Services (AWS) ofrecen plataformas SLM administradas que respaldan el desarrollo y la implementación rápidos de soluciones de procesamiento del lenguaje natural, lo que permite a las empresas aprovechar la IA de vanguardia sin una gran sobrecarga técnica.
- Esta tendencia hacia la implementación de SLM basada en la nube está impulsando una adopción más amplia en sectores como la atención médica, las finanzas, el comercio minorista y el servicio al cliente, donde las soluciones de lenguaje de IA escalables y confiables son fundamentales para la transformación digital.
- La creciente preferencia por los SLM alojados en la nube refleja la necesidad de capacidades de IA flexibles y bajo demanda que puedan manejar cargas de trabajo dinámicas, lo que permite a las organizaciones innovar más rápido y brindar experiencias de usuario personalizadas a escala.
Dinámica del mercado del modelo de lenguaje pequeño (SLM)
Conductor
“Aumento de la adopción de la automatización impulsada por IA”
- La creciente adopción de la automatización impulsada por IA en las industrias es un impulsor importante de la creciente demanda de modelos de lenguaje pequeños (SLM), ya que las empresas buscan optimizar las operaciones, mejorar la productividad y ofrecer interacciones de usuario inteligentes basadas en el lenguaje.
- Por ejemplo, en febrero de 2024, Microsoft integró modelos de lenguaje de IA a pequeña escala en su suite Dynamics 365, lo que permitió respuestas automatizadas a los clientes, resúmenes de datos en tiempo real y consultas en lenguaje natural, lo que permitió a los usuarios operar sistemas complejos con una simple entrada de texto.
- A medida que las empresas buscan reducir la carga de trabajo manual y acelerar la toma de decisiones, los SLM ofrecen soluciones eficientes para automatizar tareas como chatbots de atención al cliente, generación de documentos y traducción de idiomas, lo que ayuda a las empresas a mejorar la interacción con los usuarios y la eficiencia operativa. Además, la creciente implementación de asistentes de IA y agentes virtuales en sectores como la salud, las finanzas y el comercio minorista está impulsando la demanda de modelos de lenguaje compactos y específicos de cada dominio que puedan ofrecer un alto rendimiento con un menor consumo de recursos.
- La capacidad de los SLM de ajustarse para aplicaciones específicas, combinada con su menor costo de implementación en comparación con los modelos de lenguaje grandes, los hace particularmente atractivos para las empresas que adoptan IA por primera vez o expanden la integración de IA en varias funciones.
- Se espera que la tendencia hacia la automatización impulsada por IA y la creciente disponibilidad de SLM alojados en la nube y previamente entrenados de proveedores como OpenAI, Google Cloud y AWS aceleren la adopción de estos modelos tanto en pymes como en grandes empresas.
Restricción/Desafío
El tamaño limitado del modelo limita la precisión y la comprensión contextual.
- El tamaño limitado del modelo, que restringe la precisión y la comprensión contextual, plantea un desafío importante para la adopción más amplia de modelos de lenguaje pequeños (SLM), en particular en aplicaciones empresariales que exigen respuestas matizadas y específicas del dominio.
- Por ejemplo, si bien los modelos LLaMA de Meta y Command R+ de Cohere están diseñados para funcionar de manera eficiente a escalas más pequeñas, a menudo tienen dificultades para comprender contextos extensos o para producir resultados altamente precisos que se requieren en sectores como el legal o el de la salud.
- Mantener una generación de lenguaje de alta calidad con recursos computacionales reducidos obliga a los desarrolladores a hacer concesiones entre la eficiencia y el rendimiento lingüístico, especialmente al implementar SLM en tiempo real o en dispositivos de borde.
- A medida que crece la demanda de herramientas de IA compactas y rentables que rivalicen con las capacidades de los LLM más grandes, superar las limitaciones de las arquitecturas más pequeñas requerirá avances continuos en el diseño de modelos, metodologías de capacitación y estrategias de ajuste.
- Abordar este desafío a través de la innovación en la investigación, la inversión en ajustes específicos para cada tarea y una mejor calidad de los datos de capacitación será esencial para garantizar que los SLM puedan cumplir con las expectativas de la industria sin comprometer el rendimiento.
Alcance del mercado del modelo de lenguaje pequeño (SLM)
El mercado está segmentado en función de la tecnología, la implementación y la aplicación.
- Por tecnología
En términos de tecnología, el mercado de Modelos de Lenguaje Pequeños se segmenta en modelos basados en aprendizaje profundo, aprendizaje automático y servicios. El segmento basado en aprendizaje automático representó la mayor cuota de mercado en ingresos, con un 55,6 % en 2024, gracias a su versatilidad y rentabilidad para gestionar diversas tareas lingüísticas. Su adopción está en aumento en sectores que buscan soluciones escalables con una complejidad moderada y tiempos de implementación más rápidos. Los servicios, que abarcan consultoría, integración y soporte, desempeñan un papel crucial para facilitar la implementación y optimización de modelos de lenguaje pequeños, especialmente para empresas que carecen de experiencia interna en IA.
Se prevé que el segmento basado en aprendizaje profundo experimente el mayor crecimiento entre 2025 y 2032, impulsado por su capacidad superior para comprender patrones lingüísticos complejos y ofrecer resultados más precisos y contextualizados. Esta tecnología se beneficia de los continuos avances en arquitecturas de redes neuronales y grandes conjuntos de datos, lo que la convierte en la opción preferida para aplicaciones que requieren alta precisión y adaptabilidad.
- Por implementación
Según la implementación, el mercado se segmenta en nube, local e híbrido. El segmento de nube obtuvo la mayor cuota de mercado en ingresos, con un 45,3 % en 2024, gracias a su escalabilidad, rentabilidad y facilidad de acceso, lo que permite a las organizaciones aprovechar modelos de lenguaje reducidos sin grandes inversiones en infraestructura. La implementación en la nube también facilita la actualización continua de los modelos y una integración fluida con otros servicios en la nube, lo que mejora la funcionalidad y la experiencia del usuario.
Se prevé que el segmento híbrido experimente la tasa de crecimiento anual compuesta (TCAC) más rápida entre 2025 y 2032, impulsada por la creciente demanda de las empresas de combinar la flexibilidad de la computación en la nube con la seguridad y el control de la infraestructura local. La implementación híbrida se adapta a industrias con estrictas regulaciones de privacidad de datos, permitiendo que los datos confidenciales permanezcan en la sede central mientras se benefician de las capacidades de la nube. La implementación local sigue siendo importante para los sectores que requieren el máximo control sobre los datos y los modelos, especialmente en entornos altamente regulados.
- Por aplicación
Según su aplicación, el mercado de Modelos de Lenguaje Pequeños se segmenta en Aplicaciones de Consumo, Aplicaciones Empresariales, Salud, Finanzas, Comercio Minorista, Legal, Manufactura y otros. Las aplicaciones de consumo representaron la mayor cuota de mercado en 2024, impulsadas por la creciente adopción de asistentes virtuales, chatbots y generación de contenido personalizado. La facilidad de integración en dispositivos y servicios cotidianos impulsa la interacción y la demanda del consumidor.
Se prevé que el segmento de Aplicaciones Empresariales experimente la tasa de crecimiento anual compuesta (TCAC) más rápida entre 2025 y 2032, impulsada por la creciente necesidad de atención al cliente automatizada, procesamiento de documentos y gestión del conocimiento. Sectores como el sanitario y el financiero se benefician de modelos de lenguaje especializados, adaptados a la documentación clínica, la detección de fraudes y el cumplimiento normativo, lo que acelera aún más su adopción. Los sectores minorista y jurídico utilizan cada vez más estos modelos para mejorar la experiencia del cliente y optimizar los flujos de trabajo, mientras que el sector manufacturero utiliza modelos de lenguaje para la documentación técnica y la comunicación en la cadena de suministro. El segmento Otros incluye aplicaciones para la educación, los medios de comunicación y la administración pública, que también están en expansión gracias a los crecientes esfuerzos de transformación digital.
Análisis regional del mercado de modelos de lenguaje pequeño (SLM)
- América del Norte dominó el mercado de modelos de lenguaje pequeño (SLM) con la mayor participación en los ingresos del 32,2 % en 2024, impulsada por la adopción generalizada de aplicaciones impulsadas por IA en todas las industrias y una fuerte inversión en investigación e infraestructura de IA avanzada.
- Las organizaciones de la región valoran mucho la integración de modelos de lenguaje pequeños para mejorar la automatización, optimizar las interacciones con los clientes y agilizar los flujos de trabajo en sectores como la atención médica, las finanzas y el comercio minorista.
- Esta adopción está respaldada además por la experiencia tecnológica, el alto gasto en TI y la presencia de empresas líderes en inteligencia artificial, lo que establece a América del Norte como un centro clave para la innovación y la implementación de soluciones SLM.
Perspectiva del mercado del modelo de lenguaje pequeño de EE. UU.
El mercado estadounidense de SLM capturó la mayor participación en los ingresos de Norteamérica en 2024, impulsado por la rápida transformación digital y la demanda de herramientas basadas en IA para optimizar los procesos de negocio. El creciente uso de asistentes virtuales, chatbots y la generación automatizada de contenido contribuye al crecimiento del mercado. El creciente enfoque en la comprensión del lenguaje natural y la mejora de la experiencia del cliente, junto con el sólido apoyo gubernamental a las iniciativas de IA, impulsa aún más el mercado. Además, los gigantes tecnológicos estadounidenses invierten continuamente en el desarrollo de sofisticados modelos de lenguaje pequeños, lo que impulsa su adopción generalizada en múltiples sectores.
Perspectivas del mercado del modelo de lenguaje pequeño europeo
Se prevé que el mercado europeo de SLM crezca de forma constante durante el período de pronóstico, impulsado por la creciente concienciación sobre las aplicaciones de IA y las normativas favorables que fomentan la privacidad de los datos y el uso responsable de la IA. El aumento de las inversiones en centros de investigación de IA y las colaboraciones entre la industria y el mundo académico impulsan la innovación. Las empresas europeas están adoptando SLM para mejorar la eficiencia operativa, la interacción con el cliente y la gestión del cumplimiento normativo, especialmente en los sectores financiero, sanitario y legal.
Análisis del mercado del modelo de lenguaje pequeño del Reino Unido
Se espera que el mercado británico de SLM experimente un crecimiento significativo durante el período de pronóstico, impulsado por el fuerte enfoque gubernamental en la estrategia de IA y la innovación digital. El aumento en la adopción de IA en los sectores de servicios públicos, finanzas y comercio minorista está impulsando la demanda de modelos lingüísticos pequeños. Además, el crecimiento de startups e incubadoras tecnológicas está acelerando la innovación y la integración de soluciones lingüísticas basadas en IA.
Análisis del mercado del modelo de lenguaje pequeño de Alemania
Se prevé que el mercado alemán de SLM se expanda a una sólida tasa de crecimiento anual compuesta (TCAC), gracias a su sólida base industrial y al énfasis en la IA para la Industria 4.0. El creciente enfoque en la seguridad de los datos, la privacidad y las aplicaciones éticas de IA fomenta su adopción en los sectores manufacturero, legal y sanitario. Las consolidadas instituciones de investigación en IA de Alemania y las iniciativas gubernamentales que promueven la innovación en IA impulsan aún más el crecimiento del mercado.
Perspectiva del mercado de modelos de lenguaje pequeño de Asia-Pacífico
El mercado de SLM de Asia-Pacífico se perfila para el crecimiento más rápido, con una tasa de crecimiento anual compuesta (TCAC) entre 2025 y 2032, impulsado por la rápida digitalización, la creciente penetración de internet y la creciente adopción de IA en China, Japón e India. Las iniciativas gubernamentales que promueven el desarrollo de la IA y las tecnologías inteligentes están acelerando su implementación. El aumento de las inversiones en startups de IA e infraestructura tecnológica está ampliando la accesibilidad y la asequibilidad de las soluciones de modelos de lenguaje pequeños en la región.
Análisis del mercado del modelo de lenguaje pequeño de Japón
El mercado japonés de SLM está cobrando impulso gracias a su ecosistema tecnológico avanzado y su enfoque en la automatización. El creciente uso de la IA en electrónica de consumo, robótica y aplicaciones empresariales impulsa la demanda. El envejecimiento de la población japonesa también impulsa la necesidad de soluciones de IA que mejoren la accesibilidad y la eficiencia, especialmente en los sectores de la salud y la atención al cliente. La integración de SLM con dispositivos IoT y sistemas inteligentes impulsa el crecimiento continuo del mercado.
Análisis del mercado del modelo de lenguaje pequeño de China
China representó la mayor participación en los ingresos del mercado de SLM en Asia-Pacífico en 2024, impulsada por el respaldo gubernamental al desarrollo de la IA, una economía digital en expansión y una amplia base de empresas tecnológicas que invierten en IA lingüística. El impulso hacia las ciudades inteligentes, el crecimiento del comercio electrónico y la adopción generalizada de dispositivos móviles impulsan la demanda en todos los sectores. Los precios competitivos y la rápida innovación de las empresas nacionales de IA son factores clave que sustentan el liderazgo del mercado en China.
Cuota de mercado del modelo de lenguaje pequeño (SLM)
La industria del modelo de lenguaje pequeño (SLM) está liderada principalmente por empresas bien establecidas, entre las que se incluyen:
- OpenAI (EE. UU.)
- Antrópico (EE. UU.)
- Google DeepMind (Reino Unido)
- Cohere (Canadá)
- Reka AI (EE. UU.)
- Zhipu AI (China)
- Nomic AI (EE. UU.)
- Stability AI (Reino Unido)
- LightOn (Francia)
- Sarvam AI (India)
- Arcee AI (EE. UU.)
- Prem Labs (EE. UU.)
- Meta AI (EE. UU.)
- Microsoft (EE. UU.)
- Salesforce AI (EE. UU.)
- Alibaba (China)
- Mosaic ML (EE. UU.)
- Instituto de Innovación Tecnológica (TII) (EAU)
- Cara abrazada (EE. UU.)
Últimos avances en el mercado global de modelos de lenguaje pequeño (SLM)
- En febrero de 2025, Microsoft amplió su presencia en el mercado de SLM con el lanzamiento de la serie Phi-4, que incluye Phi-4-mini-instruct y Phi-4-multimodal. Estos modelos ofrecen capacidades mejoradas de razonamiento, comprensión multilingüe y codificación, lo que los hace ideales tanto para empresas como para desarrolladores. Se espera que su disponibilidad en plataformas como Hugging Face, Azure AI Foundry y Ollama amplíe significativamente el acceso de los usuarios y acelere su adopción en diversos sectores.
- En febrero de 2025, IBM amplió su línea de modelos Granite para incluir modelos multimodales y centrados en el razonamiento, diseñados para aplicaciones empresariales. Con Granite Multimodal y Granite Reasoning, IBM aborda una necesidad crítica de IA interpretable y con capacidad lógica, lo que podría aumentar la cuota de mercado de SLM para empresas. Estas herramientas están diseñadas para una integración fluida y una adopción responsable, lo que mejora la toma de decisiones y la automatización basadas en IA.
- En enero de 2025, Arcee AI reforzó su posición competitiva con el lanzamiento de dos nuevos SLM: Virtuoso-Lite y Virtuoso-Medium-v2, basados en DeepSeek-V3. Estos modelos, en especial Virtuoso-Medium-v2, que superó los benchmarks previos de Arcee, mejoran el rendimiento en aplicaciones matemáticas y de código. Su arquitectura avanzada y técnicas patentadas probablemente impulsarán la innovación en casos de uso académicos y técnicos dentro del mercado de SLM.
- En noviembre de 2024, Amazon reforzó su presencia en el sector de la IA con una inversión adicional de 4000 millones de dólares en Anthropic. Esta inversión, sumada al entrenamiento con tecnología de AWS Trainium para modelos Claude como Claude 3.5 Haiku y Claude 3.5 Sonnet, subraya la ambición de Amazon de liderar los modelos agentic de alto rendimiento. El sólido rendimiento de la serie Claude en tareas de codificación la posiciona como un importante contribuyente al panorama comercial de SLM, especialmente en aplicaciones orientadas al desarrollador.
- En abril de 2024, Microsoft presentó «Phi-3-mini», un modelo de IA ligero que busca ofrecer capacidades lingüísticas avanzadas a un mayor número de usuarios a un menor coste. Al ofrecerlo a través de plataformas como Microsoft Azure AI Model Catalog, Hugging Face, Ollama y NVIDIA NIM, Microsoft consolida su posición en el mercado de los Small Language Model (SLM). Este lanzamiento marca el inicio de su serie SLM abierta, lo que mejora significativamente la accesibilidad y fomenta su adopción generalizada en todos los sectores.
SKU-
Obtenga acceso en línea al informe sobre la primera nube de inteligencia de mercado del mundo
- Panel de análisis de datos interactivo
- Panel de análisis de empresas para oportunidades con alto potencial de crecimiento
- Acceso de analista de investigación para personalización y consultas
- Análisis de la competencia con panel interactivo
- Últimas noticias, actualizaciones y análisis de tendencias
- Aproveche el poder del análisis de referencia para un seguimiento integral de la competencia
Metodología de investigación
La recopilación de datos y el análisis del año base se realizan utilizando módulos de recopilación de datos con muestras de gran tamaño. La etapa incluye la obtención de información de mercado o datos relacionados a través de varias fuentes y estrategias. Incluye el examen y la planificación de todos los datos adquiridos del pasado con antelación. Asimismo, abarca el examen de las inconsistencias de información observadas en diferentes fuentes de información. Los datos de mercado se analizan y estiman utilizando modelos estadísticos y coherentes de mercado. Además, el análisis de la participación de mercado y el análisis de tendencias clave son los principales factores de éxito en el informe de mercado. Para obtener más información, solicite una llamada de un analista o envíe su consulta.
La metodología de investigación clave utilizada por el equipo de investigación de DBMR es la triangulación de datos, que implica la extracción de datos, el análisis del impacto de las variables de datos en el mercado y la validación primaria (experto en la industria). Los modelos de datos incluyen cuadrícula de posicionamiento de proveedores, análisis de línea de tiempo de mercado, descripción general y guía del mercado, cuadrícula de posicionamiento de la empresa, análisis de patentes, análisis de precios, análisis de participación de mercado de la empresa, estándares de medición, análisis global versus regional y de participación de proveedores. Para obtener más información sobre la metodología de investigación, envíe una consulta para hablar con nuestros expertos de la industria.
Personalización disponible
Data Bridge Market Research es líder en investigación formativa avanzada. Nos enorgullecemos de brindar servicios a nuestros clientes existentes y nuevos con datos y análisis que coinciden y se adaptan a sus objetivos. El informe se puede personalizar para incluir análisis de tendencias de precios de marcas objetivo, comprensión del mercado de países adicionales (solicite la lista de países), datos de resultados de ensayos clínicos, revisión de literatura, análisis de mercado renovado y base de productos. El análisis de mercado de competidores objetivo se puede analizar desde análisis basados en tecnología hasta estrategias de cartera de mercado. Podemos agregar tantos competidores sobre los que necesite datos en el formato y estilo de datos que esté buscando. Nuestro equipo de analistas también puede proporcionarle datos en archivos de Excel sin procesar, tablas dinámicas (libro de datos) o puede ayudarlo a crear presentaciones a partir de los conjuntos de datos disponibles en el informe.

