Global Edge Ai Hardware Market
Taille du marché en milliards USD
TCAC :
%
USD
1.86 Billion
USD
4.94 Billion
2024
2031
| 2025 –2031 | |
| USD 1.86 Billion | |
| USD 4.94 Billion | |
|
|
|
|
Segmentation du marché mondial du matériel d'intelligence artificielle (IA), par appareil (smartphones, appareils photo, robots, objets connectés, haut-parleurs intelligents, automobile et miroirs intelligents), processeurs (unité centrale de traitement (CPU), unité de traitement graphique (GPU), circuit intégré spécifique à l'application (ASIC) et autres), consommation d'énergie (moins de 1 W, 1 à 3 W, 3 à 5 W, 5 à 10 W et plus de 10 W), processus (formation et inférence), secteur d'utilisation finale (électronique grand public, maison intelligente, automobile et transport, gouvernement, soins de santé, industrie, aérospatiale et défense, construction et autres) - Tendances et prévisions du secteur jusqu'en 2032
Analyse du marché du matériel d'intelligence artificielle (IA) Edge
Le marché du matériel d’intelligence artificielle (IA) Edge connaît une croissance rapide en raison des progrès technologiques et de l’adoption croissante des applications d’IA. L’IA Edge fait référence au traitement des données plus proche de la source (sur des appareils tels que les smartphones, les appareils IoT et les véhicules autonomes) au lieu de s’appuyer sur des centres de données cloud centralisés. Les innovations récentes dans les puces à semi-conducteurs, telles que les processeurs d’IA spécialisés et l’informatique neuromorphique, ont considérablement amélioré l’efficacité et la puissance des appareils Edge.
Les méthodes les plus récentes incluent le développement de puces d’intelligence artificielle à faible consommation d’énergie et de cadres informatiques de pointe conçus pour exécuter efficacement des modèles d’apprentissage automatique en périphérie. Ces technologies prennent en charge le traitement des données en temps réel, réduisant la latence et améliorant la vitesse de prise de décision dans des applications telles que les maisons intelligentes, l’automatisation industrielle et les systèmes autonomes.
Les entreprises exigent de plus en plus de solutions basées sur l’IA plus rapides et plus fiables, et le matériel d’IA de pointe prend de l’ampleur. Le marché est également stimulé par la nécessité d’améliorer la confidentialité et la sécurité, car les appareils de pointe peuvent traiter les données localement sans avoir besoin de les transférer vers le cloud, offrant ainsi un meilleur contrôle sur les informations sensibles. Cette tendance devrait continuer à alimenter la croissance du marché.
Taille du marché du matériel d'intelligence artificielle (IA) Edge
Français La taille du marché mondial du matériel d'intelligence artificielle (IA) de pointe était évaluée à 1,86 milliard USD en 2024 et devrait atteindre 4,94 milliards USD d'ici 2032, avec un TCAC de 20,84 % au cours de la période de prévision de 2025 à 2032. En plus des informations sur les scénarios de marché tels que la valeur marchande, le taux de croissance, la segmentation, la couverture géographique et les principaux acteurs, les rapports de marché organisés par Data Bridge Market Research comprennent également une analyse approfondie des experts, une production et une capacité géographiquement représentées par l'entreprise, des configurations de réseau de distributeurs et de partenaires, une analyse détaillée et mise à jour des tendances des prix et une analyse des déficits de la chaîne d'approvisionnement et de la demande.
Tendances du marché du matériel d'intelligence artificielle (IA) Edge
« Adoption accrue des appareils Edge alimentés par l'IA »
L’adoption croissante d’appareils de pointe alimentés par l’IA est une tendance spécifique qui stimule la croissance du marché des équipements d’intelligence artificielle (IA) de pointe. Ces appareils, tels que les caméras intelligentes, les capteurs et les véhicules autonomes, sont conçus pour traiter les données localement, réduisant ainsi la latence et la consommation de bande passante. Dans des secteurs tels que la fabrication, la santé et l’automobile, qui s’appuient sur l’analyse des données en temps réel, cette tendance est cruciale. Par exemple, dans les usines intelligentes, l’IA de pointe permet de détecter les défauts en temps réel, améliorant ainsi l’efficacité opérationnelle. En outre, les véhicules autonomes utilisent l’IA de pointe pour traiter les données des capteurs afin de prendre des décisions instantanées, améliorant ainsi la sécurité et les performances. À mesure que la demande de traitement en temps réel augmente, le matériel d’IA de pointe continue de gagner du terrain dans divers secteurs.
Portée du rapport et segmentation du marché du matériel d'intelligence artificielle (IA) de pointe
|
Attributs |
Informations clés sur le marché du matériel d'intelligence artificielle (IA) Edge |
|
Segments couverts |
|
|
Pays couverts |
États-Unis, Canada et Mexique en Amérique du Nord, Allemagne, France, Royaume-Uni, Pays-Bas, Suisse, Belgique, Russie, Italie, Espagne, Turquie, Reste de l'Europe en Europe, Chine, Japon, Inde, Corée du Sud, Singapour, Malaisie, Australie, Thaïlande, Indonésie, Philippines, Reste de l'Asie-Pacifique (APAC) en Asie-Pacifique (APAC), Arabie saoudite, Émirats arabes unis, Afrique du Sud, Égypte, Israël, Reste du Moyen-Orient et de l'Afrique (MEA) en tant que partie du Moyen-Orient et de l'Afrique (MEA), Brésil, Argentine et Reste de l'Amérique du Sud en tant que partie de l'Amérique du Sud |
|
Principaux acteurs du marché |
Cisco Systems, Inc. (États-Unis), IBM (États-Unis), Intel Corporation (États-Unis), SAMSUNG (Corée du Sud), Google (États-Unis), Microsoft (États-Unis), Micron Technology, Inc (États-Unis), NVIDIA Corporation (États-Unis), Oracle (États-Unis), Arm Limited (Royaume-Uni), Xilinx (États-Unis), Advanced Micro Devices, Inc (États-Unis), Dell (États-Unis), Hewlett Packard Enterprises Development LP (États-Unis), Habana Labs Ltd (États-Unis), Facebook, Inc (États-Unis), Synopsys, Inc (États-Unis), Nutanix (États-Unis), Pure Storage, Inc (États-Unis), Amazon Web Services, Inc (États-Unis) |
|
Opportunités de marché |
|
|
Ensembles d'informations sur les données à valeur ajoutée |
Outre les informations sur les scénarios de marché tels que la valeur marchande, le taux de croissance, la segmentation, la couverture géographique et les principaux acteurs, les rapports de marché organisés par Data Bridge Market Research comprennent également une analyse approfondie des experts, une production et une capacité géographiquement représentées par l'entreprise, des configurations de réseau de distributeurs et de partenaires, une analyse détaillée et mise à jour des tendances des prix et une analyse du déficit de la chaîne d'approvisionnement et de la demande. |
Définition du marché du matériel d'intelligence artificielle (IA) Edge
Le matériel d'intelligence artificielle (IA) de périphérie fait référence à des appareils informatiques spécialisés conçus pour traiter les tâches d'IA directement à la source des données, ou « périphérie », au lieu de s'appuyer sur des serveurs basés sur le cloud. Ces appareils, tels que les GPU de périphérie, les TPU et les puces d'IA personnalisées, permettent un traitement des données en temps réel avec une latence plus faible, une utilisation réduite de la bande passante et une confidentialité améliorée. Couramment utilisé dans les appareils IoT, les véhicules autonomes, l'automatisation industrielle et les caméras intelligentes, le matériel d'IA de périphérie optimise les performances en permettant aux modèles d'IA de s'exécuter localement. Cela réduit la dépendance aux infrastructures cloud centralisées, améliorant la vitesse, la fiabilité et l'évolutivité des applications pilotées par l'IA.
Dynamique du marché du matériel d'intelligence artificielle (IA) Edge
Conducteurs
- Adoption accrue des appareils IoT
La croissance rapide de l’Internet des objets (IoT) est un moteur important pour le marché du matériel d’IA de pointe. À mesure que les appareils IoT tels que les caméras intelligentes, les objets connectés et les capteurs industriels prolifèrent, la demande de traitement local des données augmente. Le matériel d’IA de pointe permet à ces appareils de traiter les données sur site, réduisant ainsi la latence et les coûts de bande passante associés au cloud computing. Par exemple, dans les systèmes de maison intelligente, les objets connectés tels que les trackers d’activité physique utilisent l’IA de pointe pour l’analyse des données en temps réel, permettant un retour d’information personnalisé sans dépendre des serveurs cloud. Cette approche décentralisée améliore l’efficacité, garantit la confidentialité et minimise la dépendance à la connectivité continue au cloud, alimentant ainsi la demande de solutions matérielles d’IA de pointe.
- Déploiement de la 5G
Le déploiement des réseaux 5G est un moteur important pour le marché du matériel d'IA de pointe. Grâce aux vitesses plus rapides et à la latence plus faible de la 5G, les appareils de pointe peuvent désormais traiter les données localement, réduisant ainsi la dépendance aux serveurs cloud et permettant une prise de décision en temps réel. Par exemple, en février 2021, Telstra s'est associé à AWS pour combiner son réseau 5G avec la technologie de pointe d'AWS. Cette collaboration vise à améliorer les performances des applications 5G en tirant parti de l'informatique de pointe d'AWS intégrée à l'infrastructure 5G de Telstra. Le partenariat vise à améliorer les capacités de l'informatique de pointe, libérant ainsi le potentiel des applications en temps réel dans divers secteurs en Australie.
Opportunités
- Progrès dans les algorithmes d'IA et de ML
Le développement continu d’algorithmes d’apprentissage automatique (ML) et d’intelligence artificielle (IA) plus efficaces et adaptés aux appareils de pointe ouvre des opportunités importantes sur le marché du matériel d’IA de pointe. Ces algorithmes sont conçus pour optimiser les performances sur du matériel avec une puissance de traitement et une consommation d’énergie limitées, permettant des fonctionnalités d’IA avancées sur des appareils plus petits et économes en énergie. Cela est particulièrement précieux pour les applications telles que les caméras intelligentes, les appareils portables et les systèmes autonomes qui nécessitent une prise de décision en temps réel sans s’appuyer sur le cloud computing. Par exemple, en mars 2024, HPE a dévoilé de nouveaux produits de formation et d’inférence GenAI, utilisant des microservices et le logiciel GPU Nvidia. Leurs solutions de périphérie à centre de données, hybrides et cloud sont conçues pour accélérer les capacités GenAI. L’introduction comprend des systèmes de supercalcul alimentés par des composants Nvidia, visant à améliorer la formation et l’inférence des modèles d’IA, répondant aux besoins des entreprises en matière de performances et d’évolutivité pilotées par l’IA. À mesure que les modèles d’IA deviennent plus efficaces et plus légers, les entreprises de secteurs tels que la santé, l’automobile et la fabrication peuvent mettre en œuvre des solutions d’IA de pointe rentables et évolutives, accélérant ainsi la croissance du marché.
- L'intelligence artificielle en plein essor dans l'électronique grand public
L’intégration croissante de l’IA dans les appareils électroniques grand public tels que les enceintes connectées, les téléviseurs et les appareils photo représente une opportunité considérable pour le marché du matériel d’IA de pointe. À mesure que les appareils deviennent plus intelligents, ils nécessitent un matériel plus puissant et plus efficace pour traiter les données localement, garantissant des réponses rapides et des expériences utilisateur améliorées. Par exemple, les fonctionnalités basées sur l’IA telles que la reconnaissance vocale dans les enceintes connectées ou la reconnaissance faciale dans les appareils photo nécessitent des solutions informatiques de pointe hautes performances. Cette demande entraîne le besoin de puces et de matériel d’IA spécialisés capables de gérer des tâches complexes sans s’appuyer sur un traitement basé sur le cloud, offrant ainsi un avantage concurrentiel aux fabricants et contribuant à la croissance du marché du matériel d’IA de pointe.
Contraintes/Défis
- Consommation d'énergie élevée
La consommation d'énergie élevée reste un défi majeur pour le marché du matériel d'IA de pointe. Les appareils d'IA de pointe nécessitent une puissance de calcul importante pour traiter les données localement, ce qui entraîne une consommation d'énergie accrue. Ce problème est particulièrement problématique pour les appareils fonctionnant sur batterie ou portables qui ont une alimentation électrique limitée. À mesure que la demande de modèles d'IA hautes performances augmente, le besoin d'une utilisation efficace de l'énergie devient plus critique. Les appareils dont la durée de vie de la batterie est insuffisante peuvent entraîner des temps de fonctionnement plus courts, nécessitant des recharges fréquentes ou des batteries plus grosses, ce qui augmente à son tour le poids et la taille de l'appareil. Par conséquent, la consommation d'énergie élevée limite l'adoption généralisée des solutions d'IA de pointe, en particulier dans les applications où la portabilité et une longue durée de vie de la batterie sont essentielles.
- Confidentialité et sécurité des données
La confidentialité et la sécurité des données posent des défis majeurs au marché du matériel d’IA de pointe. Les données sensibles étant traitées localement sur des appareils de pointe, garantir leur confidentialité et leur protection contre les cybermenaces devient une préoccupation essentielle. Ces appareils sont souvent plus vulnérables aux failles de sécurité que les systèmes cloud centralisés, ce qui en fait des cibles attrayantes pour les cyberattaques. En outre, la conformité aux réglementations en constante évolution en matière de protection des données, telles que le RGPD, complique encore davantage la situation. La nature décentralisée des appareils de pointe signifie qu’il est difficile d’appliquer des mesures de sécurité cohérentes sur tous les appareils, ce qui augmente le risque de fuite de données ou d’accès non autorisé. Ce manque de cadres de sécurité robustes freine l’adoption et la croissance généralisées du marché.
Ce rapport de marché fournit des détails sur les nouveaux développements récents, les réglementations commerciales, l'analyse des importations et des exportations, l'analyse de la production, l'optimisation de la chaîne de valeur, la part de marché, l'impact des acteurs du marché national et local, les opportunités d'analyse en termes de poches de revenus émergentes, les changements dans la réglementation du marché, l'analyse stratégique de la croissance du marché, la taille du marché, la croissance des catégories de marché, les niches d'application et la domination, les approbations de produits, les lancements de produits, les expansions géographiques, les innovations technologiques sur le marché. Pour obtenir plus d'informations sur le marché, contactez Data Bridge Market Research pour un briefing d'analyste, notre équipe vous aidera à prendre une décision de marché éclairée pour atteindre la croissance du marché.
Portée du marché du matériel d'intelligence artificielle (IA) Edge
Le marché est segmenté en fonction des appareils, des processeurs, de la consommation d'énergie et du secteur d'activité de l'utilisateur final. La croissance parmi ces segments vous aidera à analyser les segments de croissance faibles dans les industries et à fournir aux utilisateurs un aperçu précieux du marché et des informations sur le marché pour les aider à prendre des décisions stratégiques pour identifier les principales applications du marché.
Appareil
- Smartphones
- Caméras
- Robots
- Portable
- Haut-parleur intelligent
- Automobile
- Miroir intelligent
Processeurs
- Unité centrale de traitement (CPU)
- Unité de traitement graphique (GPU)
- Circuit intégré spécifique à une application (ASIC)
- Autres
Consommation d'énergie
- Moins de 1 W
- 1-3W
- 3-5 W
- 5-10 W
- Plus de 10 W
Processus
- Entraînement
- Inférence
Secteur d'utilisation finale
- Électronique grand public
- Maison intelligente
- Automobile et transport
- Gouvernement
- Soins de santé
- Industriel
- Aérospatiale et Défense
- Construction
- Autres
Analyse régionale du marché du matériel d'intelligence artificielle (IA) Edge
Le marché est analysé et des informations sur la taille et les tendances du marché sont fournies par appareil, processeurs, consommation d'énergie et secteur d'activité de l'utilisateur final, comme référencé ci-dessus.
Les pays couverts dans le rapport de marché sont les États-Unis, le Canada, le Mexique en Amérique du Nord, l'Allemagne, la Suède, la Pologne, le Danemark, l'Italie, le Royaume-Uni, la France, l'Espagne, les Pays-Bas, la Belgique, la Suisse, la Turquie, la Russie, le reste de l'Europe en Europe, le Japon, la Chine, l'Inde, la Corée du Sud, la Nouvelle-Zélande, le Vietnam, l'Australie, Singapour, la Malaisie, la Thaïlande, l'Indonésie, les Philippines, le reste de l'Asie-Pacifique (APAC) en Asie-Pacifique (APAC), le Brésil, l'Argentine, le reste de l'Amérique du Sud en tant que partie de l'Amérique du Sud, les Émirats arabes unis, l'Arabie saoudite, Oman, le Qatar, le Koweït, l'Afrique du Sud, le reste du Moyen-Orient et de l'Afrique (MEA) en tant que partie du Moyen-Orient et de l'Afrique (MEA).
L'Amérique du Nord devrait dominer le marché du matériel d'intelligence artificielle (IA) de pointe en raison du taux d'adoption élevé des serveurs basés sur l'IA et de la présence d'importants fournisseurs de technologies d'IA dans la région. Des entreprises nord-américaines, telles que NVIDIA, Intel et IBM, sont à l'origine des avancées dans les technologies matérielles d'IA. La solide infrastructure de la région, sa main-d'œuvre qualifiée et ses investissements dans la recherche sur l'IA renforcent encore sa domination, positionnant l'Amérique du Nord comme un acteur clé dans le secteur du matériel d'IA de pointe.
L'Asie-Pacifique devrait connaître une croissance significative du marché du matériel d'intelligence artificielle (IA) de pointe en raison de la construction en cours de projets de « nouvelles infrastructures », tels que les réseaux 5G et les centres de données. L'adoption croissante de solutions basées sur l'IA dans des secteurs tels que les télécommunications, la fabrication et la santé stimule encore davantage la demande du marché. En outre, l'augmentation des initiatives de villes intelligentes et le besoin de traitement des données en temps réel sont des facteurs clés qui soutiennent l'expansion des technologies matérielles d'IA dans la région.
La section pays du rapport fournit également des facteurs d'impact sur les marchés individuels et des changements dans la réglementation du marché qui ont un impact sur les tendances actuelles et futures du marché. Des points de données tels que l'analyse de la chaîne de valeur en aval et en amont, les tendances techniques et l'analyse des cinq forces du porteur, les études de cas sont quelques-uns des indicateurs utilisés pour prévoir le scénario de marché pour les différents pays. En outre, la présence et la disponibilité des marques mondiales et les défis auxquels elles sont confrontées en raison de la concurrence importante ou rare des marques locales et nationales, l'impact des tarifs nationaux et les routes commerciales sont pris en compte tout en fournissant une analyse prévisionnelle des données nationales.
Part de marché du matériel d'intelligence artificielle (IA) Edge
Le paysage concurrentiel du marché fournit des détails par concurrent. Les détails inclus sont la présentation de l'entreprise, les finances de l'entreprise, les revenus générés, le potentiel du marché, les investissements dans la recherche et le développement, les nouvelles initiatives du marché, la présence mondiale, les sites et installations de production, les capacités de production, les forces et les faiblesses de l'entreprise, le lancement du produit, la largeur et l'étendue du produit, la domination des applications. Les points de données ci-dessus fournis ne concernent que l'orientation des entreprises par rapport au marché.
Les leaders du marché du matériel d'intelligence artificielle (IA) de pointe opérant sur le marché sont :
- Cisco Systems, Inc. (États-Unis)
- IBM (États-Unis)
- Intel Corporation (États-Unis)
- SAMSUNG (Corée du Sud)
- Google (États-Unis)
- Microsoft (États-Unis)
- Micron Technology, Inc (États-Unis)
- NVIDIA Corporation (États-Unis)
- Oracle (États-Unis)
- Arm Limited (Royaume-Uni)
- Xilinx (États-Unis)
- Advanced Micro Devices, Inc (États-Unis)
- Dell (États-Unis)
- Hewlett Packard Enterprises Development LP (États-Unis)
- Habana Labs Ltd (États-Unis)
- Facebook, Inc (États-Unis)
- Synopsys, Inc (États-Unis)
- Nutanix (États-Unis)
- Pure Storage, Inc (États-Unis)
- Amazon Web Services, Inc (États-Unis)
Dernières évolutions du marché du matériel d'intelligence artificielle (IA) Edge
- En juillet 2024, VIA Technologies s'est associée à Rutronik pour améliorer l'accessibilité de ses technologies avancées d'IoT, d'IA de pointe et de vision par ordinateur. Cette collaboration stratégique vise les secteurs industriel, de la vente au détail et commercial, en mettant l'accent sur le traitement des données en temps réel et la réduction des latences. Les solutions de périphérie intelligentes de VIA, équipées de processeurs MediaTek Genio, sont adaptées à diverses applications dans ces secteurs
- En juillet 2024, TRUMPF s'est associé à SiMa.ai, une société spécialisée dans les logiciels et les systèmes d'apprentissage automatique embarqués, pour intégrer les capacités d'IA dans les systèmes laser de TRUMPF. Cette collaboration vise des applications dans le domaine du soudage, de la découpe, du marquage et de l'impression 3D de poudre métallique. Cette alliance dotera les technologies laser de TRUMPF d'une intelligence artificielle avancée pour des opérations plus efficaces et plus précises
- En mars 2024, Edge Impulse Inc. a lancé une intégration directe avec Arm Keil MDK, offrant un accès à des modèles avancés d'apprentissage automatique (ML) et d'IA. Cette intégration facilite la collaboration entre les spécialistes et les équipes des systèmes embarqués, les aidant à développer et à commercialiser plus efficacement des outils d'IA de pointe. L'initiative vise à simplifier le développement de modèles ML pour les appareils de pointe
- En mars 2024, HPE a dévoilé de nouveaux produits de formation et d'inférence GenAI, utilisant des microservices et le logiciel GPU Nvidia. Leurs solutions Edge-to-Datacenter, hybrides et cloud sont conçues pour accélérer les capacités GenAI. L'introduction comprend des systèmes de supercalcul alimentés par des composants Nvidia, visant à améliorer la formation et l'inférence des modèles d'IA, répondant aux besoins des entreprises en matière de performances et d'évolutivité pilotées par l'IA
- En septembre 2022, Nvidia a étendu sa technologie d'intelligence artificielle Edge pour les soins de santé et la robotique avec la plateforme Nvidia IGX. Destinée aux applications industrielles et médicales, la plateforme est conçue pour accélérer les performances et permettre des informations en temps réel. Cette extension fournit des solutions d'IA de pointe qui améliorent la fonctionnalité et la réactivité de secteurs critiques tels que la santé et la robotique
- En février 2021, Telstra s'est associé à AWS pour combiner son réseau 5G avec la technologie de pointe d'AWS. Cette collaboration vise à améliorer les performances des applications 5G en tirant parti de l'informatique de pointe d'AWS intégrée à l'infrastructure 5G de Telstra. Le partenariat vise à améliorer les capacités de l'informatique de pointe, libérant ainsi le potentiel des applications en temps réel dans divers secteurs en Australie
SKU-
Accédez en ligne au rapport sur le premier cloud mondial de veille économique
- Tableau de bord d'analyse de données interactif
- Tableau de bord d'analyse d'entreprise pour les opportunités à fort potentiel de croissance
- Accès d'analyste de recherche pour la personnalisation et les requêtes
- Analyse de la concurrence avec tableau de bord interactif
- Dernières actualités, mises à jour et analyse des tendances
- Exploitez la puissance de l'analyse comparative pour un suivi complet de la concurrence
Méthodologie de recherche
La collecte de données et l'analyse de l'année de base sont effectuées à l'aide de modules de collecte de données avec des échantillons de grande taille. L'étape consiste à obtenir des informations sur le marché ou des données connexes via diverses sources et stratégies. Elle comprend l'examen et la planification à l'avance de toutes les données acquises dans le passé. Elle englobe également l'examen des incohérences d'informations observées dans différentes sources d'informations. Les données de marché sont analysées et estimées à l'aide de modèles statistiques et cohérents de marché. De plus, l'analyse des parts de marché et l'analyse des tendances clés sont les principaux facteurs de succès du rapport de marché. Pour en savoir plus, veuillez demander un appel d'analyste ou déposer votre demande.
La méthodologie de recherche clé utilisée par l'équipe de recherche DBMR est la triangulation des données qui implique l'exploration de données, l'analyse de l'impact des variables de données sur le marché et la validation primaire (expert du secteur). Les modèles de données incluent la grille de positionnement des fournisseurs, l'analyse de la chronologie du marché, l'aperçu et le guide du marché, la grille de positionnement des entreprises, l'analyse des brevets, l'analyse des prix, l'analyse des parts de marché des entreprises, les normes de mesure, l'analyse globale par rapport à l'analyse régionale et des parts des fournisseurs. Pour en savoir plus sur la méthodologie de recherche, envoyez une demande pour parler à nos experts du secteur.
Personnalisation disponible
Data Bridge Market Research est un leader de la recherche formative avancée. Nous sommes fiers de fournir à nos clients existants et nouveaux des données et des analyses qui correspondent à leurs objectifs. Le rapport peut être personnalisé pour inclure une analyse des tendances des prix des marques cibles, une compréhension du marché pour d'autres pays (demandez la liste des pays), des données sur les résultats des essais cliniques, une revue de la littérature, une analyse du marché des produits remis à neuf et de la base de produits. L'analyse du marché des concurrents cibles peut être analysée à partir d'une analyse basée sur la technologie jusqu'à des stratégies de portefeuille de marché. Nous pouvons ajouter autant de concurrents que vous le souhaitez, dans le format et le style de données que vous recherchez. Notre équipe d'analystes peut également vous fournir des données sous forme de fichiers Excel bruts, de tableaux croisés dynamiques (Fact book) ou peut vous aider à créer des présentations à partir des ensembles de données disponibles dans le rapport.
