Analyse prédictive mondiale du marché des réadmissions hospitalières : taille, part et tendances – Aperçu et prévisions du secteur jusqu'en 2032

Demande de table des matières Demande de table des matières Parler à un analysteParler à un analyste Exemple de rapport gratuitExemple de rapport gratuit Renseignez-vous avant d'acheterRenseignez-vous avant Acheter maintenantAcheter maintenant

Analyse prédictive mondiale du marché des réadmissions hospitalières : taille, part et tendances – Aperçu et prévisions du secteur jusqu'en 2032

  • Medical Devices
  • Upcoming Reports
  • Jul 2025
  • Global
  • 350 Pages
  • Nombre de tableaux : 220
  • Nombre de figures : 60

Contournez les défis liés aux tarifs grâce à un conseil agile en chaîne d'approvisionnement

L’analyse de l’écosystème de la chaîne d’approvisionnement fait désormais partie des rapports DBMR

Global Predictive Analytics For Hospital Readmissions Market

Taille du marché en milliards USD

TCAC :  % Diagram

Chart Image USD 1.18 Billion USD 3.19 Billion 2024 2032
Diagram Période de prévision
2025 –2032
Diagram Taille du marché (année de référence)
USD 1.18 Billion
Diagram Taille du marché (année de prévision)
USD 3.19 Billion
Diagram TCAC
%
Diagram Principaux acteurs du marché
  • IBM Corporation
  • SAS Institute Inc.
  • Optum Inc.
  • Cerner Corporation

Analyse prédictive mondiale pour la segmentation du marché des réadmissions hospitalières, par type (outils d'évaluation des risques de réadmission, systèmes d'aide à la décision clinique, solutions de surveillance des patients, solutions de gestion de la santé de la population, etc.), protocole de communication (cloud, sur site, web, hybride, etc.), utilisation (algorithmes d'apprentissage automatique, modèles de régression, machines à vecteurs de support (SVM), réseaux de neurones, etc.), application (hôpitaux, cliniques, centres de soins de longue durée, soins à domicile, etc.) - Tendances et prévisions du secteur jusqu'en 2032

Analyse prédictive pour le marché des réadmissions à l'hôpital z

Analyse prédictive pour la taille du marché des réadmissions à l'hôpital

  • La taille du marché mondial de l'analyse prédictive pour les réadmissions à l'hôpital était évaluée à 1,18 milliard USD en 2024  et devrait atteindre  3,19 milliards USD d'ici 2032 , à un TCAC de 13,30 % au cours de la période de prévision.
  •  La croissance du marché est largement alimentée par l'adoption croissante et les progrès technologiques dans le domaine de l'informatique de santé et de l'analyse des données, conduisant à une numérisation accrue dans les systèmes hospitaliers et les milieux cliniques.
  •  Par ailleurs, la hausse des coûts de santé et la nécessité de réduire les réadmissions évitables font de l'analyse prédictive la solution incontournable pour la gestion des réadmissions hospitalières. Ces facteurs convergents accélèrent l'adoption de ces solutions, stimulant ainsi considérablement la croissance du secteur.

Analyse prédictive du marché des réadmissions à l'hôpital

  • Les outils d'analyse prédictive, qui exploitent l'intelligence artificielle (IA) et les algorithmes d'apprentissage automatique, deviennent de plus en plus essentiels pour réduire les taux de réadmission à l'hôpital en identifiant les patients à risque et en permettant des interventions rapides. Ces technologies sont intégrées aux dossiers médicaux électroniques (DME) et aux plateformes de gestion des soins afin de soutenir la prise de décision clinique et opérationnelle.
  • La demande croissante d’analyse prédictive dans le domaine de la santé est principalement alimentée par le fardeau croissant des maladies chroniques, l’augmentation des coûts des soins de santé et l’accent mis à l’échelle mondiale sur les modèles de soins fondés sur la valeur qui pénalisent les réadmissions inutiles.
  • L'Amérique du Nord a dominé le marché de l'analyse prédictive pour les réadmissions hospitalières, avec une part de chiffre d'affaires de 42,7 % en 2024, grâce à une infrastructure de santé avancée, une adoption robuste des systèmes informatiques de santé et un solide soutien réglementaire pour des résultats de qualité. Les États-Unis, en particulier, ont connu une croissance substantielle du déploiement de plateformes d'analyse prédictive dans les hôpitaux et les organisations de soins responsables (ACO), stimulée par les pénalités de réadmission imposées par les Centers for Medicare & Medicaid Services (CMS) et par l'attention croissante portée à la gestion de la santé de la population.
  • L'Asie-Pacifique devrait être la région connaissant la croissance la plus rapide sur le marché de l'analyse prédictive des réadmissions à l'hôpital au cours de la période de prévision, avec un TCAC de 19,3 % prévu entre 2025 et 2032. Les facteurs contribuant à cette croissance comprennent l'augmentation des investissements dans la numérisation des soins de santé, l'expansion des réseaux hospitaliers et le besoin croissant d'une utilisation efficace des ressources dans les pays densément peuplés comme la Chine et l'Inde.
  • Le segment cloud a dominé le marché de l'analyse prédictive pour les réadmissions hospitalières, avec une part de marché de 61,8 % en 2024, grâce à des avantages tels que la flexibilité, l'accès à distance et l'intégration transparente aux systèmes hospitaliers. L'évolution croissante vers l'infrastructure cloud dans le secteur de la santé permet l'analyse des données en temps réel, une évolutivité rentable et une interopérabilité renforcée entre les dossiers médicaux électroniques (DME) et les plateformes prédictives, favorisant ainsi l'adoption généralisée des solutions cloud.

Portée du rapport et analyse prédictive pour la segmentation du marché des réadmissions à l'hôpital     

Attributs

Analyse prédictive des réadmissions à l'hôpital : informations clés sur le marché

Segments couverts

  • Par type : outils d'évaluation des risques de réadmission, systèmes d'aide à la décision clinique, solutions de surveillance des patients, solutions de gestion de la santé de la population et autres
  • Par protocole de communication : basé sur le cloud, sur site, basé sur le Web, hybride et autres
  • En travaillant : algorithmes d'apprentissage automatique, modèles de régression, machines à vecteurs de support (SVM), réseaux de neurones et autres
  • Par application : hôpitaux, cliniques, centres de soins de longue durée, soins à domicile et autres

Pays couverts

Amérique du Nord

  • NOUS
  • Canada
  • Mexique

Europe

  • Allemagne
  • France
  • ROYAUME-UNI
  • Pays-Bas
  • Suisse
  • Belgique
  • Russie
  • Italie
  • Espagne
  • Turquie
  • Reste de l'Europe

Asie-Pacifique

  • Chine
  • Japon
  • Inde
  • Corée du Sud
  • Singapour
  • Malaisie
  • Australie
  • Thaïlande
  • Indonésie
  • Philippines
  • Reste de l'Asie-Pacifique

Moyen-Orient et Afrique

  • Arabie Saoudite
  • Émirats arabes unis
  • Afrique du Sud
  • Egypte
  • Israël
  • Reste du Moyen-Orient et de l'Afrique

Amérique du Sud

  • Brésil
  • Argentine
  • Reste de l'Amérique du Sud

Acteurs clés du marché

  • IBM Corporation (États-Unis)
  • SAS Institute Inc. (États-Unis)
  • Optum, Inc. (États-Unis)
  • Cerner Corporation (États-Unis)
  • Epic Systems Corporation (États-Unis)
  • Allscripts Healthcare Solutions, Inc. (États-Unis)
  • Health Catalyst (États-Unis)
  • Oracle Corporation (États-Unis)
  • Veradigm (États-Unis)
  • Change Healthcare (États-Unis)
  • 3M (États-Unis)
  • MedeAnalytics, Inc. (États-Unis)
  • Inovalon Holdings, Inc. (États-Unis)
  • Cognizant Technology Solutions (États-Unis)
  • Philips Healthcare (Pays-Bas)

Opportunités de marché

  • Intégration avec les plateformes de surveillance à distance des patients (RPM) et de télésanté
  • Demande croissante sur les marchés émergents

Ensembles d'informations de données à valeur ajoutée

Outre les informations sur les scénarios de marché tels que la valeur marchande, le taux de croissance, la segmentation, la couverture géographique et les principaux acteurs, les rapports de marché organisés par Data Bridge Market Research comprennent également une analyse approfondie des experts, une analyse des prix, une analyse de la part de marque, une enquête auprès des consommateurs, une analyse démographique, une analyse de la chaîne d'approvisionnement, une analyse de la chaîne de valeur, un aperçu des matières premières/consommables, des critères de sélection des fournisseurs, une analyse PESTLE, une analyse Porter et un cadre réglementaire.

Analyse prédictive des tendances du marché des réadmissions à l'hôpital

« Adoption accélérée grâce aux avancées technologiques et à l'automatisation des flux de travail »

  • L'intégration croissante des technologies avancées dans les systèmes de prise de décision clinique et de gestion des soins constitue une tendance majeure et croissante sur le marché mondial de l'analyse prédictive des réadmissions hospitalières. Ces avancées améliorent considérablement l'efficacité, la précision et la simplicité opérationnelle dans les établissements de santé.
    • Par exemple, les solutions développées par IBM Watson Health et SAS Health Analytics sont intégrées aux écosystèmes informatiques hospitaliers, offrant des informations prédictives qui aident les prestataires à identifier les patients à haut risque avec plus de précision et de rapidité. Ces outils favorisent la planification proactive des soins et l'optimisation des ressources afin de réduire les réadmissions inutiles.
  • Les modèles prédictifs intégrés aux flux de travail hospitaliers peuvent tirer des enseignements des dossiers médicaux historiques et des comportements des patients, permettant ainsi des recommandations et des alertes personnalisées pour des interventions rapides. Ce niveau d'intelligence contribue à améliorer les résultats des patients et à réduire les coûts opérationnels des prestataires de soins.
  • La convergence des plateformes d'analyse avec les dossiers médicaux électroniques (DME), les solutions de télésanté et les systèmes de télésurveillance favorise un environnement d'échange de données fluide. Grâce à des tableaux de bord centralisés, les professionnels de santé peuvent gérer efficacement les évaluations des risques, la coordination des soins et les programmes de suivi post-sortie.
  • Cette évolution vers des systèmes prédictifs plus intuitifs, interopérables et évolutifs transforme les stratégies de réadmission hospitalière. Par conséquent, des entreprises comme Epic Systems et Cerner améliorent leurs offres d'analyse pour répondre aux besoins des hôpitaux en matière d'informations exploitables et de solutions centrées sur le patient.
  • La demande croissante d'outils de santé favorisant l'efficacité clinique et réduisant les pénalités de réadmission accélère l'adoption de solutions d'analyse prédictive dans les hôpitaux, les établissements de soins de longue durée et les services de soins à domicile. Les acteurs de la santé privilégient de plus en plus ces innovations pour se conformer aux exigences politiques et aux modèles de soins fondés sur la valeur.

Analyse prédictive pour la dynamique du marché des réadmissions à l'hôpital

Conducteur

« Besoin croissant en raison de la hausse des taux de réadmission et de la demande de soins axés sur la valeur »

  • Le fardeau financier et clinique croissant des réadmissions à l'hôpital, en particulier chez les patients atteints de maladies chroniques, a incité les prestataires de soins de santé et les payeurs à rechercher des outils d'analyse prédictive pour une identification précoce des risques et une intervention proactive.
    • Par exemple, en avril 2024, Onity, Inc. (Honeywell International, Inc.) a annoncé des avancées dans les solutions IoT de santé visant à améliorer les systèmes de surveillance des patients hospitalisés, reflétant la tendance plus large du secteur à intégrer l'analyse prédictive dans les flux de travail cliniques.
  • Alors que les systèmes de santé évoluent vers des modèles de remboursement basés sur la valeur, la réduction des réadmissions évitables est devenue un indicateur de performance clé. Les solutions d'analyse prédictive offrent des informations basées sur les données historiques et en temps réel des patients, telles que les données démographiques, les comorbidités, l'observance du traitement et le comportement après la sortie, afin d'identifier les personnes à risque.
  • En outre, l’intégration croissante des dossiers médicaux électroniques (DME), des technologies de santé portables et des outils de surveillance à distance des patients améliore la qualité et l’étendue des données disponibles pour la modélisation prédictive, favorisant ainsi l’adoption par le marché.
  • Les prestataires de soins de santé se tournent de plus en plus vers l'analyse prédictive pour améliorer la planification des sorties, personnaliser les soins de suivi et allouer les ressources plus efficacement, ce qui se traduit par de meilleurs résultats pour les patients et une réduction des pénalités dans le cadre de programmes tels que le Programme de réduction des réadmissions à l'hôpital (HRRP).

Retenue/Défi

« Confidentialité des données, complexité de l'intégration et coûts de mise en œuvre élevés »

  • Les préoccupations en matière de confidentialité et de sécurité des données constituent un obstacle majeur à l'adoption de l'analyse prédictive en milieu hospitalier. Le traitement des données sensibles des patients exige le respect de réglementations strictes telles que la loi HIPAA (aux États-Unis) et le RGPD (en Europe), ce qui rend indispensables des mécanismes robustes de chiffrement et de contrôle d'accès.
  • De plus, de nombreux hôpitaux sont confrontés à des problèmes d'interopérabilité en raison de la fragmentation des systèmes informatiques de santé. L'intégration de plateformes d'analyse prédictive à divers systèmes de DMP et flux de travail cliniques peut s'avérer longue et coûteuse, en particulier pour les établissements de santé sous-financés ou ruraux.
  • Bien que les outils d'analyse basés sur le cloud apparaissent comme des alternatives plus évolutives, les coûts d'installation initiaux, y compris la formation, les mises à niveau de l'infrastructure et les abonnements aux fournisseurs, restent un obstacle pour les petits hôpitaux.
  • Pour une acceptation plus large, les fournisseurs doivent s'attacher à proposer des solutions interopérables, rentables et faciles à mettre en œuvre, tout en garantissant une gouvernance transparente des données et un soutien à la conformité. Les financements publics et les partenariats public-privé peuvent également jouer un rôle crucial pour alléger le fardeau financier de l'adoption.

Analyse prédictive pour le marché des réadmissions à l'hôpital

Le marché de l’analyse prédictive pour les réadmissions à l’hôpital est segmenté en quatre catégories notables en fonction du type de composant, du mode de livraison, de l’utilisateur final et de l’application.

• Par type de composant

En fonction du type de composant, le marché de l'analyse prédictive pour les réadmissions hospitalières est segmenté en logiciels, services et matériel. Le segment des logiciels a dominé le marché avec 45,3 % de chiffre d'affaires en 2024, porté par la demande croissante d'outils d'analyse de données avancés pour surveiller la santé des patients et anticiper les réadmissions.

Le segment des services devrait connaître le taux de croissance le plus rapide, soit 22,6 % de TCAC, de 2025 à 2032, en raison de la demande croissante de services de formation, de conseil et d'intégration.

• Par mode de livraison

En fonction du mode de prestation, le marché de l'analyse prédictive pour les réadmissions hospitalières est segmenté en solutions cloud et sur site. Le segment cloud a représenté la plus grande part de chiffre d'affaires, avec 61,8 % en 2024, grâce à des avantages tels que la flexibilité, l'accès à distance et la facilité d'intégration aux systèmes hospitaliers.

Le segment sur site devrait connaître le taux de croissance le plus rapide au cours de la période de prévision, privilégié par les grandes institutions soucieuses du contrôle des données et de la conformité réglementaire.

• Par l'utilisateur final

En fonction de l'utilisateur final, le marché de l'analyse prédictive pour les réadmissions hospitalières est segmenté en hôpitaux, cliniques, centres de chirurgie ambulatoire et autres. Le segment hospitalier a représenté la plus grande part de chiffre d'affaires, soit 58,6 % en 2024, grâce à un volume élevé de patients, à des sanctions de réadmission plus strictes et à des budgets plus importants pour les technologies prédictives.

Le segment des centres chirurgicaux ambulatoires devrait connaître le TCAC le plus rapide de 23,1 % entre 2025 et 2032, à mesure qu'ils adoptent de plus en plus de suivis de patients basés sur la technologie.

• Sur demande

En fonction des applications, le marché de l'analyse prédictive pour les réadmissions hospitalières est segmenté en gestion des maladies chroniques, suivi de la récupération chirurgicale, prévention des réadmissions pour raisons de santé mentale, suivi des soins aux personnes âgées, etc. Le segment de la gestion des maladies chroniques dominait avec une part de marché de 39,5 % en 2024, porté par la nécessité de gérer les réadmissions liées aux maladies cardiaques, au diabète et à la BPCO.

Le segment du suivi de la récupération chirurgicale devrait connaître le taux de croissance le plus rapide au cours de la période de prévision, car les complications postopératoires restent l'une des principales causes de réadmissions non planifiées.

Analyse prédictive du marché régional des réadmissions à l'hôpital

  • L'Amérique du Nord a dominé le marché de l'analyse prédictive pour les réadmissions à l'hôpital avec la plus grande part de revenus de 42,7 % en 2024, grâce à la demande croissante d'outils d'évaluation des risques basés sur l'IA, à la pression croissante pour réduire les coûts des soins de santé et au fort soutien gouvernemental aux solutions de santé numériques.
  • L’intégration généralisée d’outils prédictifs dans les dossiers de santé électroniques (DSE) et les programmes de soins basés sur la valeur stimule davantage la croissance du marché dans cette région.
  • Le marché régional bénéficie d'une infrastructure informatique de santé mature, de cadres de remboursement robustes et de prestataires de soins de santé proactifs cherchant à réduire les réadmissions hospitalières évitables grâce à des stratégies d'intervention précoce.

Analyse prédictive du marché américain des réadmissions à l'hôpital

Le marché américain de l'analyse prédictive pour les réadmissions hospitalières a représenté la plus grande part de chiffre d'affaires en Amérique du Nord en 2024, avec 83 %. Cette domination est due aux initiatives des CMS (Centers for Medicare & Medicaid Services) pénalisant les hôpitaux pour les réadmissions excessives, ce qui a favorisé l'adoption généralisée des plateformes d'analyse prédictive. Des acteurs majeurs tels qu'Epic Systems, IBM Watson Health et Cerner investissent massivement dans l'IA et les outils d'apprentissage automatique conçus pour améliorer les résultats des patients tout en réduisant les coûts.

Analyse prédictive du marché européen des réadmissions à l'hôpital

Le marché européen de l'analyse prédictive pour les réadmissions hospitalières devrait connaître une croissance soutenue tout au long de la période de prévision, soutenue par des réglementations plus strictes en matière de performance hospitalière et par un besoin croissant de maîtrise des coûts au sein des services de santé nationaux. Des pays comme l'Allemagne, la France et le Royaume-Uni investissent dans la transformation numérique de la santé, notamment l'analyse prédictive pour améliorer la prise de décision clinique et réduire la durée d'hospitalisation. Les initiatives d'interopérabilité et les programmes de recherche collaborative à travers l'UE contribuent également à l'accélération du marché.

Analyse prédictive du marché des réadmissions hospitalières au Royaume-Uni

Le marché britannique de l'analyse prédictive pour les réadmissions hospitalières devrait connaître une croissance annuelle moyenne (TCAC) remarquable au cours de la période de prévision. Les initiatives gouvernementales, telles que le Plan à long terme du NHS, mettent l'accent sur la modélisation prédictive et les outils de stratification des risques pour gérer proactivement les maladies chroniques et réduire les taux de réadmission. La disponibilité croissante des données patients en temps réel et des plateformes d'analyse cloud favorise une adoption plus rapide dans les hôpitaux publics et privés.

Analyse prédictive du marché allemand des réadmissions à l'hôpital

Le marché allemand de l'analyse prédictive des réadmissions hospitalières devrait connaître une croissance annuelle moyenne (TCAC) considérable au cours de la période de prévision, porté par l'accent mis sur la numérisation des soins de santé, le vieillissement de la population et la nécessité d'une gestion proactive des maladies chroniques. Les entreprises locales collaborent avec des fournisseurs de technologies pour développer des modèles prédictifs basés sur des données probantes (RWE), améliorant ainsi la précision des prédictions de risques et stimulant la pénétration du marché dans les centres médicaux universitaires et les hôpitaux régionaux.

Analyse prédictive du marché des réadmissions hospitalières en Asie-Pacifique

Le marché de l'analyse prédictive des réadmissions hospitalières en Asie-Pacifique devrait connaître le TCAC le plus rapide, soit 19,3 % entre 2025 et 2032, grâce à la hausse des investissements dans les infrastructures de santé, à la charge de morbidité croissante et aux initiatives de transformation numérique dans des pays comme la Chine, l'Inde, le Japon et la Corée du Sud. La région constate un intérêt croissant pour la télésurveillance, le triage assisté par l'IA et les applications mobiles de santé qui exploitent l'analyse prédictive pour réduire les réadmissions à l'hôpital.

Analyse prédictive du marché japonais des réadmissions à l'hôpital

Le marché japonais de l'analyse prédictive pour les réadmissions hospitalières connaît un essor considérable en raison du vieillissement rapide de la population, de la hausse des coûts de santé et de la forte volonté gouvernementale d'intégrer l'IA dans les milieux cliniques. Avec un TCAC prévu de 21,8 %, le Japon s'appuie sur des plateformes prédictives avancées pour optimiser la planification des sorties d'hôpital et les stratégies de soins de longue durée. Les collaborations entre hôpitaux et entreprises technologiques renforcent encore la maturité du marché.

Analyse prédictive du marché chinois des réadmissions à l'hôpital

En 2024, le marché chinois de l'analyse prédictive pour les réadmissions hospitalières représentait la plus grande part de chiffre d'affaires en Asie-Pacifique, avec 41,3 %. Ce leadership s'appuie sur des initiatives nationales en matière de santé numérique, des investissements dans des infrastructures hospitalières intelligentes et un solide écosystème d'innovateurs technologiques locaux. L'analyse prédictive est largement utilisée dans les hôpitaux tertiaires pour la prise en charge des patients à haut risque, notamment en cardiologie, en oncologie et en soins post-chirurgicaux. Des projets soutenus par le gouvernement favorisent l'intégration de l'IA pour gérer les disparités en matière de soins de santé en milieu rural et rationaliser les flux de réadmission.

Analyse prédictive pour les parts de marché des réadmissions à l'hôpital

Le secteur de l'analyse prédictive pour les réadmissions à l'hôpital est principalement dirigé par des entreprises bien établies, notamment :

  • IBM Corporation (États-Unis)
  • SAS Institute Inc. (États-Unis)
  • Optum, Inc. (États-Unis)
  • Cerner Corporation (États-Unis)
  • Epic Systems Corporation (États-Unis)
  • Allscripts Healthcare Solutions, Inc. (États-Unis)
  • Health Catalyst (États-Unis)
  • Oracle Corporation (États-Unis)
  • Veradigm (États-Unis)
  • Change Healthcare (États-Unis)
  • 3M (États-Unis)
  • MedeAnalytics, Inc. (États-Unis)
  • Inovalon Holdings, Inc. (États-Unis)
  • Cognizant Technology Solutions (États-Unis)
  • Philips Healthcare (Pays-Bas)

 Derniers développements sur le marché mondial de l'analyse prédictive pour les réadmissions à l'hôpital

  • En avril 2025, les National Institutes of Health (NIH) ont financé une étude clinique visant à introduire un outil de dépistage basé sur l'IA afin de réduire les réadmissions à l'hôpital liées aux troubles liés à l'usage d'opioïdes. Cet outil a permis de réduire de 47 % le risque de réadmission à 30 jours et d'économiser plus de 100 000 USD en frais hospitaliers au cours de l'étude. Cela confirme le potentiel de l'analyse prédictive pour améliorer les transitions de soins et cibler les patients à haut risque.
  • En mars 2025, le Mount Sinai Health System a mis en place un modèle prédictif en temps réel qui s'intègre aux dossiers médicaux électroniques des patients pour gérer proactivement les soins après la sortie de l'hôpital. Ce modèle a permis de réduire les taux de réadmission de 10 %, permettant une meilleure coordination des soins et un meilleur suivi des patients grâce à des données probantes.
  • En février 2025, un hôpital californien de sécurité sociale a utilisé l'IA prédictive et des flux de soins automatisés pour réduire les réadmissions de 27,9 % à 23,9 %, tout en éliminant les disparités raciales dans la qualité des sorties. Le programme a conservé 7,2 millions de dollars de financement basé sur la performance et a été salué comme un modèle reproductible pour les populations vulnérables.
  • En avril 2025, l'Hôpital Campbellford Memorial (Canada) a lancé le programme « Smart Discharge », qui utilise l'analyse prédictive infonuagique pour identifier les patients ruraux à haut risque et les accompagner à domicile après leur sortie. Cette initiative vise à réduire les réadmissions évitables et à améliorer l'accessibilité aux soins de santé dans les communautés éloignées.
  • En janvier 2025, Jvion, entreprise d'IA médicale, a étendu ses partenariats avec plusieurs hôpitaux américains pour déployer sa plateforme « Clinical AI Readmission Risk » basée sur l'apprentissage automatique. Cette solution analyse plus de 4 500 variables pour prédire les réadmissions et recommander des interventions ciblées, améliorant ainsi considérablement la prise de décision opérationnelle et clinique.


SKU-

Accédez en ligne au rapport sur le premier cloud mondial de veille économique

  • Tableau de bord d'analyse de données interactif
  • Tableau de bord d'analyse d'entreprise pour les opportunités à fort potentiel de croissance
  • Accès d'analyste de recherche pour la personnalisation et les requêtes
  • Analyse de la concurrence avec tableau de bord interactif
  • Dernières actualités, mises à jour et analyse des tendances
  • Exploitez la puissance de l'analyse comparative pour un suivi complet de la concurrence
Demande de démonstration

Méthodologie de recherche

La collecte de données et l'analyse de l'année de base sont effectuées à l'aide de modules de collecte de données avec des échantillons de grande taille. L'étape consiste à obtenir des informations sur le marché ou des données connexes via diverses sources et stratégies. Elle comprend l'examen et la planification à l'avance de toutes les données acquises dans le passé. Elle englobe également l'examen des incohérences d'informations observées dans différentes sources d'informations. Les données de marché sont analysées et estimées à l'aide de modèles statistiques et cohérents de marché. De plus, l'analyse des parts de marché et l'analyse des tendances clés sont les principaux facteurs de succès du rapport de marché. Pour en savoir plus, veuillez demander un appel d'analyste ou déposer votre demande.

La méthodologie de recherche clé utilisée par l'équipe de recherche DBMR est la triangulation des données qui implique l'exploration de données, l'analyse de l'impact des variables de données sur le marché et la validation primaire (expert du secteur). Les modèles de données incluent la grille de positionnement des fournisseurs, l'analyse de la chronologie du marché, l'aperçu et le guide du marché, la grille de positionnement des entreprises, l'analyse des brevets, l'analyse des prix, l'analyse des parts de marché des entreprises, les normes de mesure, l'analyse globale par rapport à l'analyse régionale et des parts des fournisseurs. Pour en savoir plus sur la méthodologie de recherche, envoyez une demande pour parler à nos experts du secteur.

Personnalisation disponible

Data Bridge Market Research est un leader de la recherche formative avancée. Nous sommes fiers de fournir à nos clients existants et nouveaux des données et des analyses qui correspondent à leurs objectifs. Le rapport peut être personnalisé pour inclure une analyse des tendances des prix des marques cibles, une compréhension du marché pour d'autres pays (demandez la liste des pays), des données sur les résultats des essais cliniques, une revue de la littérature, une analyse du marché des produits remis à neuf et de la base de produits. L'analyse du marché des concurrents cibles peut être analysée à partir d'une analyse basée sur la technologie jusqu'à des stratégies de portefeuille de marché. Nous pouvons ajouter autant de concurrents que vous le souhaitez, dans le format et le style de données que vous recherchez. Notre équipe d'analystes peut également vous fournir des données sous forme de fichiers Excel bruts, de tableaux croisés dynamiques (Fact book) ou peut vous aider à créer des présentations à partir des ensembles de données disponibles dans le rapport.

Questions fréquemment posées

Le marché est segmenté en fonction de Analyse prédictive mondiale pour la segmentation du marché des réadmissions hospitalières, par type (outils d'évaluation des risques de réadmission, systèmes d'aide à la décision clinique, solutions de surveillance des patients, solutions de gestion de la santé de la population, etc.), protocole de communication (cloud, sur site, web, hybride, etc.), utilisation (algorithmes d'apprentissage automatique, modèles de régression, machines à vecteurs de support (SVM), réseaux de neurones, etc.), application (hôpitaux, cliniques, centres de soins de longue durée, soins à domicile, etc.) - Tendances et prévisions du secteur jusqu'en 2032 .
La taille du Analyse prédictive mondiale du marché était estimée à 1.18 USD Billion USD en 2024.
Le Analyse prédictive mondiale du marché devrait croître à un TCAC de 13.3% sur la période de prévision de 2025 à 2032.
Les principaux acteurs du marché sont IBM Corporation, SAS Institute Inc., Optum Inc., Cerner Corporation.
Testimonial