Latest Developments in Global Predictive Analytics For Hospital Readmissions Market

back-icon

Back to Report

Request for TOC Request for TOC Speak to Analyst Speak to Analyst Free Sample Report Free Sample Report Inquire Before Buying Inquire Before Buy Now Buy Now

Latest Developments in Global Predictive Analytics For Hospital Readmissions Market

  • Medical Devices
  • Jul 2025
  • Global
  • 350 Pages
  • No of Tables: 220
  • No of Figures: 60

  • In April 2025, the National Institutes of Health (NIH) funded a clinical study that introduced an AI-based screening tool to reduce hospital readmissions related to opioid use disorder. The tool achieved a 47% reduction in 30-day readmission odds and saved over USD 100,000 in hospital costs during the study. This validates the potential of predictive analytics in improving care transitions and targeting high-risk patients
  • In March 2025, Mount Sinai Health System implemented a real-time predictive model that integrates with patient electronic health records to proactively manage post-discharge care. This reduced readmission rates by 10%, enabling better care coordination and patient monitoring through data-driven insights
  • In February 2025, a safety-net hospital in California used predictive AI and automated care workflows to decrease readmissions from 27.9% to 23.9%, while eliminating racial disparities in discharge quality. The program retained USD 7.2 million in performance-based funding and was hailed as a replicable model for vulnerable population
  • In April 2025, Campbellford Memorial Hospital (Canada) launched the “Smart Discharge” program, using cloud-based predictive analytics to identify high-risk rural patients for home-based post-discharge follow-up. The initiative aims to reduce avoidable readmissions and improve healthcare accessibility in remote communities
  • In January 2025, healthcare AI company Jvion expanded partnerships with multiple U.S. hospitals to deploy its machine-learning-powered "Clinical AI Readmission Risk" platform. The solution analyzes over 4,500 variables to predict readmissions and recommend targeted interventions, significantly enhancing operational and clinical decision-making