世界のAIコード市場規模、シェア、トレンド分析レポート
Market Size in USD Billion
CAGR :
%
USD
5.33 Billion
USD
30.38 Billion
2024
2032
| 2025 –2032 | |
| USD 5.33 Billion | |
| USD 30.38 Billion | |
|
|
|
|
グローバルAIコード市場のセグメンテーション、オペレーション別(コード生成、コード拡張、言語翻訳、コードレビュー)、アプリケーション別(データサイエンスと分析、ゲーム開発と設計、Webとアプリケーション開発、IoTとスマートデバイス)、垂直別(BFSI、メディアとエンターテイメント、ITと通信、ヘルスケアとライフサイエンス、輸送と物流、小売とEコマース) - 2032年までの業界動向と予測
AIコード市場規模
- 世界のAIコード市場規模は2024年に53億3000万米ドルと評価され、予測期間中に24.30%のCAGRで成長し、2032年には303億8000万米ドル に達すると予想されています 。
- 市場の成長は、主にソフトウェア開発ライフサイクルへの人工知能の急速な統合によって促進され、コード生成、バグ検出、予測コーディングワークフローの自動化が可能になったことによる。
- さらに、市場投入までの時間の短縮、コード品質の向上、開発コストの削減に対する需要の高まりにより、AIを活用したコーディングツールはあらゆる業界で不可欠な資産として確立されつつあります。これらの要因が重なり、AI主導の開発プラットフォームの導入が加速し、業界の成長を大きく後押ししています。
AIコード市場分析
- 機械学習と自然言語処理を活用してコード生成を支援または自動化するAIコードツールは、生産性、精度、拡張性を向上させる能力があるため、さまざまな分野の現代のソフトウェア開発環境の重要なコンポーネントになりつつあります。
- AIコーディングソリューションの需要の高まりは、主に熟練した開発者の世界的な不足、ソフトウェアアーキテクチャの複雑さの増大、そして競争の激しい市場におけるリリースサイクルの加速に対するプレッシャーの高まりによって促進されています。
- 北米は、2024年に41.7%という最大の収益シェアでAIコード市場を支配しました。これは、強力な技術インフラ、企業による早期導入、主要なAIおよびクラウドサービスプロバイダーの存在を特徴としており、米国は、スタートアップ企業や大手テクノロジー企業におけるAI支援プログラミングツールの進歩をリードしています。
- アジア太平洋地域は、ITセクターの拡大、AI研究における政府の取り組み、ローコードおよびノーコード開発プラットフォームへの関心の高まりにより、予測期間中にAIコード市場で最も急速に成長する地域になると予想されています。
- コード生成セグメントは、2024年に47.2%の市場シェアでAIコード市場を支配しました。これは、反復的なコーディングタスクを自動化し、エンタープライズとオープンソースプロジェクトの両方で開発者の効率を高めるためのAIの使用が増えていることが要因です。
レポートの範囲とAIコード市場のセグメンテーション
|
属性 |
AIコードの主要な市場洞察 |
|
対象セグメント |
|
|
対象国 |
北米
ヨーロッパ
アジア太平洋
中東およびアフリカ
南アメリカ
|
|
主要な市場プレーヤー |
|
|
市場機会 |
|
|
付加価値データ情報セット |
データブリッジマーケットリサーチがまとめた市場レポートには、市場価値、成長率、セグメンテーション、地理的範囲、主要プレーヤーなどの市場シナリオに関する洞察に加えて、専門家による詳細な分析、価格設定分析、ブランドシェア分析、消費者調査、人口統計分析、サプライチェーン分析、バリューチェーン分析、原材料/消耗品の概要、ベンダー選択基準、PESTLE分析、ポーター分析、規制の枠組みも含まれています。 |
AIコード市場の動向
AIと自然言語処理(NLP)による開発者の生産性向上
- 世界のAIコード市場における重要かつ加速的なトレンドとして、高度な自然言語処理(NLP)と機械学習アルゴリズムを開発ツールに統合することが挙げられます。これにより、ユーザーは人間のようなシンプルなプロンプトを使ってコードを生成・修正できるようになります。この変化は、ソフトウェア開発ワークフローをより直感的で効率的かつアクセスしやすいものにすることで、革命を起こしています。
- 例えば、OpenAIのCodexを搭載したGitHub Copilotは、開発者が自然言語入力に基づいてコードスニペットを生成したり、関数を補完したり、完全なモジュールを作成したりすることを可能にします。同様に、Amazon CodeWhispererやTabnineなどのツールは、インテリジェントなコード補完とコンテキストに応じた提案を提供し、開発をスピードアップします。
- AIを活用したコーディングアシスタントは、既存のコードベースから学習し、バグを検出し、最適化を提案し、個々のコーディングスタイルに合わせて応答を調整することができます。これらのツールは時間の経過とともに進化し、より多くのプログラミングシナリオに触れるにつれて、精度とコンテキストの関連性が向上します。さらに、複数のプログラミング言語に対応できるため、多様な開発者層にとって魅力的です。
- Visual Studio Code、JetBrains、Eclipseなどの一般的な統合開発環境(IDE)にAIコードアシスタントをシームレスに統合することで、統合開発環境でのリアルタイムのコラボレーション、コードレビュー、デバッグが容易になります。
- ますますインテリジェントで、コンテキスト依存型、そして会話型のコーディングプラットフォームへのトレンドは、開発者エクスペリエンスを再定義しつつあります。その結果、GoogleやMetaといった大手テクノロジー企業は、クロスプラットフォーム開発とDevOpsの自動化をサポートする高度なAIコード生成モデルに投資しています。
- 開発を効率化し、認知負荷を軽減し、迅速なプロトタイピングをサポートするAI支援コーディングツールの需要は、アジャイルで高品質なソフトウェアの需要が高まり続ける中で、スタートアップ企業、企業、フリーランス開発者の間で急速に高まっています。
AIコード市場の動向
ドライバ
自動化の需要が高まる中で加速するソフトウェア開発
- 現代のソフトウェアの複雑さの増大と、製品を迅速かつ大規模に提供することへのプレッシャーの高まりが、AIコード生成ツールの採用の大きな原動力となっている。
- 例えば、2024年3月には、MicrosoftはAzure DevOpsとGitHub Enterpriseに新しいCopilot統合を導入し、CI/CDの自動化を強化し、開発ライフサイクル全体を通じてリアルタイムのコード提案を可能にしました。こうしたイノベーションは、予測期間中にAIコード市場を前進させると予想されます。
- AI 搭載のコード アシスタントは、リアルタイムの提案を提供し、定型コードを自動生成し、開発プロセスの早い段階でバグを検出します。これにより、開発時間が短縮され、コーディング エラーが減少します。
- さらに、世界的に熟練した開発者が不足しているため、組織は人間の能力を補完し、ローコード/ノーコードプラットフォームを通じて非技術者がアプリケーション開発に貢献できるようにするAIツールを導入する必要に迫られています。
- これらのツールは、オンボーディングの迅速化、コラボレーションの促進、コード品質の向上といった機能を備えているため、金融、ヘルスケア、小売などの業界で広く採用されています。企業が業務のデジタル化と新しいデジタルサービスの迅速な構築を目指す中で、AIコーディングプラットフォームは開発チームにとって不可欠なものになりつつあります。
抑制/挑戦
トレーニングデータの偏りとソフトウェアライセンスの遵守
- AIコード市場が直面する主要な課題の一つは、コード生成ツールが学習に使用したデータに基づいて、安全でない、不正確な、あるいは偏ったコードを再現する可能性があることです。学習データに欠陥のあるコードや著作権で保護されたコードが含まれている場合、その出力から法的および機能上の問題が生じるリスクがあります。
- 例えば、一部の開発者は、CopilotなどのツールからAIが生成したコードが、制限的なライセンスの下でオープンソースプロジェクトのスニペットを誤って複製し、商用アプリケーションに知的財産上の懸念を引き起こす可能性があると懸念している。
- これに対処するために、開発者は厳格なコードレビュープロセスを導入し、オープンソースライセンスの規範への準拠を確保する必要があります。また、企業はモデルトレーニングデータの透明性を高め、法的リスクを軽減するためのフィルタリングメカニズムの改良にも取り組んでいます。
- さらに、AIコーディングツールは複雑なアプリケーションのコンテキストを完全に理解できないことが多く、特にミッションクリティカルなシステムでは、最適ではない、あるいは安全でない提案につながる可能性があります。コードの信頼性を確保するには、継続的なモデルの改良と人間による監視が不可欠です。
- メリットは拡大しているものの、開発者からの初期の懐疑心、潜在的な法的リスク、そしてAIによる意思決定における説明可能性の必要性は、導入の障壁として依然として存在しています。ライセンスの透明性の向上、モデル性能の向上、そして開発者教育を通じてこれらの課題を克服することが、長期的な市場成長にとって不可欠です。
AIコード市場の展望
市場は、操作、アプリケーション、垂直に基づいて分割されています。
- 操作によって
AIコード市場は、運用方法に基づいて、コード生成、コード拡張、言語翻訳、コードレビューの4つに分類されます。コード生成セグメントは、開発サイクルを加速し、開発者の負担を軽減する自動コーディングソリューションの需要の高まりにより、2024年には47.2%という最大の収益シェアで市場を席巻しました。GitHub CopilotやAmazon CodeWhispererなど、AIを活用したコード生成ツールは、企業やフリーランサーの間で、ラピッドプロトタイピング、定型文作成、多言語コード出力などに広く採用されています。
コード拡張セグメントは、コード品質、バグ検出、パフォーマンス最適化への関心の高まりを背景に、2025年から2032年にかけて最も高いCAGRを達成すると予想されています。このセグメントにおけるAI搭載ツールは、リファクタリング、セキュリティパッチ適用、コードの可読性向上を支援するため、DevOpsパイプラインや大規模ソフトウェア保守ワークフローに不可欠なものとなっています。
- アプリケーション別
AIコード市場は、用途別にデータサイエンスとアナリティクス、ゲーム開発とデザイン、Webとアプリケーション開発、IoTとスマートデバイスの4つに分類されます。Webとアプリケーション開発セグメントは、スタートアップ企業、中小企業、大手テクノロジー企業におけるAI支援開発環境の普及に支えられ、2024年には最大の収益シェアを獲得しました。これらのツールは、フロントエンドとバックエンドの開発を効率化し、API統合を促進し、特にアジャイル開発やローコード/ノーコード開発モデルにおいて、フルスタックの導入を加速します。
データサイエンスとアナリティクス分野は、予測期間中に最も高い成長率を記録すると予想されています。データモデルの複雑化と熟練したデータエンジニアの不足により、スクリプトの自動生成、データパイプラインの最適化、探索的データ分析の自動化を可能にするAIツールの導入が加速しています。
- 垂直方向
AIコード市場は、業種別に見ると、BFSI、メディア・エンターテインメント、IT・通信、ヘルスケア・ライフサイエンス、運輸・物流、小売・eコマースに分類されます。IT・通信セグメントは、AI開発ツールの早期導入と、ネットワーク管理、サイバーセキュリティ、クラウドサービスといった多様なアプリケーションニーズに対応するためのスケーラブルで自動化されたコーディング環境の需要により、2024年には最大の収益シェアを獲得し、市場を席巻しました。
ヘルスケア・ライフサイエンス分野は、医療ソフトウェア、診断ツール、患者データ管理システムなどの分野における、正確で規制に準拠した安全なコーディングソリューションへの需要に支えられ、2025年から2032年にかけて最も高いCAGRで成長すると予測されています。AIコーディングツールは、精度の確保、開発時間の短縮、そしてヘルステックプラットフォームにおけるイノベーションの支援のために、ますます利用が広がっています。
AIコード市場の地域分析
- 北米は、2024年に41.7%という最大の収益シェアでAIコード市場を支配しました。これは、強力な技術インフラ、企業による早期導入、主要なAIおよびクラウドサービスプロバイダーの存在を特徴としており、米国は、スタートアップ企業や大手テクノロジー企業におけるAI支援プログラミングツールの進歩をリードしています。
- この地域の開発者や企業は、既存の開発環境やDevOpsワークフローと統合されることが多いAI搭載コーディングツールが提供する生産性向上、自動化機能、高度なコードインテリジェンスを高く評価しています。
- この広範な採用は、強力な研究開発投資、成熟したスタートアップエコシステム、より迅速なソフトウェア配信サイクルに対する需要の高まりによってさらに支えられており、AI支援コーディングプラットフォームは、あらゆるセクターの現代のソフトウェア開発にとって重要なツールとして確立されています。
米国AIコード市場インサイト
米国のAIコード市場は、2024年には北米最大の収益シェア(79.5%)を獲得しました。これは、デジタルトランスフォーメーションの普及と、業界をまたいだAI開発ツールの早期導入が牽引役となっています。企業は、生産性向上、技術的負債の削減、そして導入の加速を目指し、ソフトウェアエンジニアリングワークフローへのAIの統合を急速に進めています。GitHub Copilot、Amazon CodeWhisperer、Google Geminiといった生成型AIプラットフォームの台頭により、AIコードアシスタントの主流化がさらに進んでいます。さらに、米国は活発なベンチャーキャピタルの活動、開発者コミュニティ、そしてスケーラブルで安全なAIを活用した開発環境に対する企業の需要の恩恵を受けています。
ヨーロッパのAIコード市場インサイト
欧州のAIコード市場は、予測期間を通じて大幅なCAGRで拡大すると予測されています。これは主に、公共サービスや産業セクターのデジタル化の進展、そしてAIの透明性と倫理性に対する規制の強化に牽引されています。欧州企業は、効率性とコンプライアンス基準を満たすために、AIを活用したコーディングツールの導入をますます進めています。この地域のオープンソースコミュニティへの積極的な参加と、独自のAIインフラへの投資も、市場の成長をさらに牽引しています。EUのデジタル戦略は、フィンテック、製造業、教育などのセクターにおけるAIの統合を奨励しており、堅牢なAIコードソリューションの需要を促進しています。
英国AIコード市場インサイト
英国のAIコード市場は、AI研究への投資増加と企業の急速なデジタル変革を背景に、予測期間中に注目すべきCAGRで成長すると予想されています。スタートアップ企業や大企業は、開発チームの規模拡大とソフトウェアのデリバリー時間の短縮のために、AI支援コーディングツールを活用しています。政府の国家AI戦略と確固たる地位を築いたフィンテックセクターも、市場を支えています。さらに、倫理的なAIと安全なソフトウェアプラクティスへの関心の高まりは、透明性の向上とコーディングエラーの削減を可能にするインテリジェントコーディングツールの導入と軌を一にしています。
ドイツAIコード市場インサイト
ドイツのAIコード市場は、産業オートメーションの旺盛な需要、デジタルイノベーションへの取り組み、そして高度なスキルを持つソフトウェアエンジニアの人材に支えられ、予測期間中に大幅なCAGRで拡大すると予想されています。ドイツの堅牢なインフラとデータセキュリティへの注力は、特に自動車、産業、ヘルスケア分野において、ソフトウェア開発へのAIの統合を推進してきました。効率的で監査可能、そしてプライバシー保護に配慮したAIコーディングツールへの需要が、市場環境を形成しています。また、研究機関とエンタープライズテクノロジープロバイダーの連携も、AIの導入を促進しています。
アジア太平洋地域のAIコード市場インサイト
アジア太平洋地域のAIコード市場は、2025年から2032年の予測期間中、中国、インド、日本などの国々における開発者人口の増加、デジタルスキル向上への取り組み、そして企業のIT近代化に牽引され、23.8%という最も高いCAGRで成長すると見込まれています。この地域の政府はAIの研究と教育に多額の投資を行い、AIを活用した開発のための強力なエコシステムを育成しています。この地域の急速な経済成長とローカライズされたAIアプリケーションへの需要の高まりは、eコマース、モバイルアプリ、スマート製造など、さまざまな業界でAIコーディングツールの導入を加速させています。
日本AIコード市場インサイト
日本のAIコード市場は、先進的なテクノロジー環境、自動化への注力、そしてソフトウェア開発における精度と品質への強いこだわりにより、急成長を遂げています。AIコードツールは、レガシーシステムを管理する企業の生産性向上や、ロボティクス、IoT、フィンテックにおけるイノベーションの支援に活用されています。特に日本では、労働力の高齢化と効率的なデジタルインフラの必要性が高まっており、既存のエンジニアリングワークフローへのAIの統合は戦略的な推進力として注目されています。
インドAIコード市場インサイト
インドのAIコード市場は、2024年にアジア太平洋地域最大の収益シェアを占めました。これは、成長を続けるITサービス産業、活気のあるスタートアップ・エコシステム、そしてあらゆるセクターにおけるAI導入への強い関心によるものです。インドでは、教育、フィンテック、エンタープライズテクノロジーの分野でAI開発プラットフォームの急速な普及が見られ、国内外の企業がコード生成とレビューを自動化するツールに投資しています。Digital IndiaやSkill Indiaといった政府プログラムも人材育成を支援し、AIベースのコーディングツールへのアクセスを向上させており、持続的な市場拡大を促進しています。
AIコードの市場シェア
AI コード業界は、主に次のような定評のある企業によって主導されています。
- GitHub, Inc.(米国)
- Amazon Web Services, Inc.(米国)
- Google LLC(米国)
- レプリット社(米国)
- Tabnine Ltd.(イスラエル)
- マイクロソフトコーポレーション(米国)
- IBMコーポレーション(米国)
- JetBrains sro(チェコ共和国)
- セールスフォース・ドットコム(米国)
- オラクル・コーポレーション(米国)
- Meta Platforms, Inc.(米国)
- SAP SE(ドイツ)
- テンセントホールディングス(中国)
- アリババグループホールディングリミテッド(中国)
- インフォシス・リミテッド(インド)
- ウィプロ・リミテッド(インド)
- HCLテクノロジーズ・リミテッド(インド)
- NVIDIAコーポレーション(米国)
- アクセンチュアplc(アイルランド)
- コグニザントテクノロジーソリューションズコーポレーション(米国)
世界の AI コード市場の最近の動向は何ですか?
- 2023年4月、マイクロソフトの子会社であるGitHubは、AIを活用したコードアシスタントの進化版であるGitHub Copilot Xのパブリックベータ版をリリースしました。Copilot Xは、自然言語プロンプトによる音声コーディング、リアルタイムのコード解説、コンテキストに応じたプルリクエストへの応答といった機能を導入しています。この開発は、生成型AIツールを開発者のワークフローに直接統合することでソフトウェア開発を変革し、チーム間の効率性とコラボレーションを向上させるというGitHubのコミットメントを反映しています。
- 2023年3月、Amazon Web Services(AWS)は、Visual Studio CodeやJetBrainsなどのIDEに統合されたAIコーディングコンパニオンであるAmazon CodeWhispererの一般提供を発表しました。数十億行のコードでトレーニングされたCodeWhispererは、開発者が複数のプログラミング言語でリアルタイムのコード提案を生成できるようにし、エラーの削減と開発のスピードアップに貢献します。AWSはこのリリースを、クラウドネイティブでAI主導のソフトウェアエンジニアリングを加速するための幅広い戦略の一環として位置付けています。
- 2023年3月、Google CloudはVertex AIプラットフォーム上でコード生成・補完モデル「Codey」を発表しました。CodeyはGoogleのPaLM 2言語モデルを活用し、高品質なコード補完、解説、チャットベースの開発支援を提供します。エンタープライズ開発者をターゲットとするCodeyは、アプリケーションのモダナイゼーション、Google Cloudサービスとの統合、AIを活用したトラブルシューティングをサポートしており、プロフェッショナル開発環境におけるAIを活用した生産性向上へのGoogleの注力姿勢を明確に示しています。
- 2023年2月、共同コーディングプラットフォームであるReplitは、ブラウザベースの環境内でエンドツーエンドのソフトウェア開発をサポートするために構築された会話型AIツール「Ghostwriter Chat」を発表しました。Ghostwriter Chatを使用すると、開発者は自然言語を使用してリアルタイムのサポートを受け、コードを生成し、プログラムをデバッグすることができます。このリリースは、特に学習者や個人開発者にとって、AIを通じてソフトウェア開発へのアクセスを民主化するというReplitの使命を示すものです。
- 2023年1月、プライバシー重視の導入で知られるAIコーディングアシスタントTabnineは、エンタープライズグレードのコーディング環境向けに設計されたTabnine Pro Teamsをリリースしました。このバージョンは、セルフホスト型モデル、コンプライアンス管理、チームレベルのコード学習をサポートしており、データの機密性とAIを活用した共同開発に関心のある企業に最適です。このリリースは、ソフトウェア開発ワークフローにおける特定の組織のニーズに合わせてカスタマイズ可能で安全なAIツールへの需要の高まりを浮き彫りにしています。
SKU-
世界初のマーケットインテリジェンスクラウドに関するレポートにオンラインでアクセスする
- インタラクティブなデータ分析ダッシュボード
- 成長の可能性が高い機会のための企業分析ダッシュボード
- カスタマイズとクエリのためのリサーチアナリストアクセス
- インタラクティブなダッシュボードによる競合分析
- 最新ニュース、更新情報、トレンド分析
- 包括的な競合追跡のためのベンチマーク分析のパワーを活用
調査方法
データ収集と基準年分析は、大規模なサンプル サイズのデータ収集モジュールを使用して行われます。この段階では、さまざまなソースと戦略を通じて市場情報または関連データを取得します。過去に取得したすべてのデータを事前に調査および計画することも含まれます。また、さまざまな情報ソース間で見られる情報の不一致の調査も含まれます。市場データは、市場統計モデルと一貫性モデルを使用して分析および推定されます。また、市場シェア分析と主要トレンド分析は、市場レポートの主要な成功要因です。詳細については、アナリストへの電話をリクエストするか、お問い合わせをドロップダウンしてください。
DBMR 調査チームが使用する主要な調査方法は、データ マイニング、データ変数が市場に与える影響の分析、および一次 (業界の専門家) 検証を含むデータ三角測量です。データ モデルには、ベンダー ポジショニング グリッド、市場タイムライン分析、市場概要とガイド、企業ポジショニング グリッド、特許分析、価格分析、企業市場シェア分析、測定基準、グローバルと地域、ベンダー シェア分析が含まれます。調査方法について詳しくは、お問い合わせフォームから当社の業界専門家にご相談ください。
カスタマイズ可能
Data Bridge Market Research は、高度な形成的調査のリーダーです。当社は、既存および新規のお客様に、お客様の目標に合致し、それに適したデータと分析を提供することに誇りを持っています。レポートは、対象ブランドの価格動向分析、追加国の市場理解 (国のリストをお問い合わせください)、臨床試験結果データ、文献レビュー、リファービッシュ市場および製品ベース分析を含めるようにカスタマイズできます。対象競合他社の市場分析は、技術ベースの分析から市場ポートフォリオ戦略まで分析できます。必要な競合他社のデータを、必要な形式とデータ スタイルでいくつでも追加できます。当社のアナリスト チームは、粗い生の Excel ファイル ピボット テーブル (ファクト ブック) でデータを提供したり、レポートで利用可能なデータ セットからプレゼンテーションを作成するお手伝いをしたりすることもできます。

