金融分野におけるAIの世界市場規模、シェア、トレンド分析レポート
Market Size in USD Billion
CAGR :
%
USD
35.72 Billion
USD
266.70 Billion
2024
2032
| 2025 –2032 | |
| USD 35.72 Billion | |
| USD 266.70 Billion | |
|
|
|
|
金融市場における世界のAIのセグメンテーション、製品タイプ別(アルゴリズム取引、ERPおよび金融システム、チャットボットおよび仮想アシスタント、自動調整ソリューション、インテリジェントドキュメント処理、ガバナンス、リスク、コンプライアンス(GRC)ソフトウェア、買掛金/売掛金自動化ソフトウェア、ロボアドバイザー、経費管理システム、コンプライアンス自動化プラットフォーム、引受ツール)、テクノロジー別(生成AI、自然言語処理(NLP)、予測分析など)、導入タイプ別(オンプレミスおよびクラウド)、アプリケーション別(不正検出、リスク管理、トレンド分析、財務計画、予測)、エンドユーザー別(銀行、保険、投資および資産管理、フィンテック、資本市場/RegTech) - 2032年までの業界動向と予測
金融におけるAI市場規模
- 金融におけるAIの世界市場規模は2024年に357.2億米ドルと評価され、予測期間中に28.57%のCAGRで成長し、2032年には2,667億米ドルに達すると予想されています。
- 市場の成長は、主に金融分野における人工知能と機械学習技術の導入の増加によって推進されており、銀行、保険、投資サービスにおける自動化、予測分析、意思決定の強化が可能になっています。
- さらに、パーソナライズされた顧客体験、効率的なリスク管理、不正検出、規制遵守に対する需要の高まりにより、金融機関はAIソリューションの導入を進めています。これらの要因が相まって、金融分野におけるAIの導入が加速し、市場拡大が著しく促進されています。
金融市場分析におけるAI
- 金融におけるAIには、機械学習、自然言語処理、ロボティックプロセスオートメーション、予測分析などの技術が含まれており、金融業務の最適化、顧客とのやり取りの改善、リスク管理の強化に役立ちます。
- AI駆動型ツールの導入増加は、主に業務効率、データ駆動型インサイト、セキュリティ強化、そして従来の金融サービスをよりインテリジェントで自動化された顧客中心のソリューションへと変革するニーズによって推進されている。
- 銀行、保険、フィンテックの各セクターでAI主導のソリューションが急速に導入されたことにより、北米は2024年に金融AI市場の43%のシェアを獲得し、市場を席巻した。
- アジア太平洋地域は、急速なデジタル化、可処分所得の増加、中国、日本、インドなどの国におけるフィンテックエコシステムの拡大により、予測期間中に金融市場におけるAIで最も急速に成長する地域になると予想されています。
- クラウド導入セグメントは、拡張性、費用対効果、AI駆動型分析プラットフォームとの統合の容易さから、2024年には75.5%の市場シェアを獲得し、市場を席巻しました。金融機関におけるクラウドベースのAIは、ITインフラの巨額なコスト負担なしに、業務の効率化、リモートアクセスの促進、リアルタイムの意思決定の強化を可能にします。
金融市場セグメンテーションにおけるレポートの範囲とAI
|
属性 |
金融におけるAIの主要市場洞察 |
|
対象セグメント |
|
|
対象国 |
北米
ヨーロッパ
アジア太平洋
中東およびアフリカ
南アメリカ
|
|
主要な市場プレーヤー |
|
|
市場機会 |
|
|
付加価値データ情報セット |
データブリッジ市場調査チームがまとめた市場レポートには、市場価値、成長率、市場セグメント、地理的範囲、市場プレーヤー、市場シナリオなどの市場洞察に加えて、専門家による詳細な分析、輸入/輸出分析、価格分析、生産消費分析、乳棒分析が含まれています。 |
金融市場におけるAIの動向
金融におけるAI主導の予測分析の利用増加
- AIを活用した予測分析の統合は、金融セクターにおける変革的なトレンドとして台頭しており、金融機関はより情報に基づいた意思決定を行い、リスク管理を最適化し、市場動向をより正確に予測することが可能になります。金融機関はAIアルゴリズムを活用して大量のデータをリアルタイムで分析し、投資戦略や顧客サービスの向上につながる予測的洞察を獲得しています。
- 例えば、JPモルガン・チェースは、リスク管理業務においてモデルを通じて人工知能を活用し、信用債務不履行を予測し、融資ポートフォリオへの潜在的な脅威を特定することに成功しています。同様に、ゴールドマン・サックスは、取引プラットフォームにAI駆動型予測分析を導入し、予測精度の向上と投資意思決定プロセスの改善に取り組んでいます。
- 予測分析への依存度が高まるにつれ、金融機関は記述的な報告からプロアクティブな意思決定へと移行することが可能になっています。過去のデータとリアルタイムフィードを活用することで、金融機関は将来の市場動向を予測し、リスク回避的な戦略を立案し、不確実性を低減しながら新たな成長機会を捉えることができます。
- AIを活用した予測モデリングは、不正行為の検知と顧客セグメンテーションの強化にも貢献しています。銀行や保険会社は、潜在的な不正行為を未然に防ぐためにこれらのシステムを活用するとともに、顧客行動予測に基づいたパーソナライズされた金融商品を提供しています。
- さらに、予測分析は、変化する世界的な金融規制に沿って疑わしい活動をフラグ付けすることで、規制遵守をサポートします。この積極的なアプローチはリスクを軽減し、金融機関と顧客間の信頼を高めます。
- まとめると、AIを活用した予測分析の利用拡大は、予測能力の強化、意思決定の改善、顧客中心の戦略の強化を通じて、金融業界のあり方を再定義しつつあります。この傾向により、データインテリジェンスは金融業界の成長と競争力の基盤であり続けるでしょう。
金融市場のダイナミクスにおけるAI
ドライバ
金融業務における自動化と効率化の需要
- 金融分野におけるAIの成長を牽引する主な要因は、自動化と業務効率化への需要の高まりです。金融機関は、膨大な量のデータ処理、ワークフローの効率化、運用コストの削減に加え、様々なサービスにおけるプロセスの迅速化と精度向上を迫られています。
- 例えば、バンク・オブ・アメリカのAI搭載アシスタント「Erica」は、顧客サービス業務の大部分を自動化し、何百万人もの顧客が迅速かつ効率的に金融情報や推奨事項にアクセスできるようにしました。これは、AIがバックオフィスの効率化と顧客対応におけるイノベーションの両方を支援していることを反映しています。
- AI技術は、融資申請、コンプライアンス報告、取引監視、ポートフォリオ管理といった反復的な業務の最適化を支援しています。金融機関はこれらのプロセスを自動化することで、労働集約的な業務を削減し、業務の重要な分野における精度と拡張性を向上させることができます。
- AI駆動型デジタルアシスタント、機械学習アルゴリズム、ロボティック・プロセス・オートメーション(RPA)の導入により、企業はより価値の高い機能に人材を投入することが可能になりました。この変化は、企業レベルと消費者レベルの両方で、生産性と組織効率を直接的に向上させます。
- 全体として、自動化への需要は、意思決定の迅速化、コスト削減、顧客満足度の向上を実現することで、金融分野におけるAI導入を促進しています。金融セクターがデータ駆動型経済における俊敏性、透明性、競争力の強化に引き続き注力する中で、この推進力は長期的な価値を保証します。
抑制/挑戦
データプライバシーと規制コンプライアンス
- 金融市場におけるAI導入の大きな制約は、データプライバシーの課題と、進化する規制枠組みへのコンプライアンス確保です。金融機関は機密性の高い顧客情報や取引情報に大きく依存しており、不正使用、不正アクセス、システム上の脆弱性に対する厳格な保護対策が求められます。
- 例えば、欧州の複数の銀行は、データ処理および同意に関する法律の遵守を確保せずにAIソリューションを導入したとして、一般データ保護規則(GDPR)に基づく調査を受けました。同様に、米国の金融機関は連邦および州の規制当局の監視下にあり、AIの導入はより複雑で、多くのリソースを必要とします。
- 予測分析と機械学習の活用には、大規模なデータセットの収集と分析が伴うため、データセキュリティや意思決定モデルにおける潜在的なバイアスについて、顧客から懸念が生じることがよくあります。情報の漏洩や不適切な管理は、機関の評判を損ない、厳しい規制の下で重い罰則につながる可能性があります。
- さらに、金融サービスのグローバルな性質は、データガバナンスに関する法律が法域によって異なるため、コンプライアンスの複雑さを招き、金融機関は地域固有のAIガバナンス慣行を採用する必要があります。これにより、AIを安全かつ責任を持って導入するためのコストと複雑さが増大します。
- その結果、金融分野におけるAI導入は大きなメリットをもたらす一方で、プライバシー保護と規制遵守に関する懸念が、本格的な導入を阻み続けています。この問題に対処するには、より強力なガバナンス、透明性の高いAIモデル、そして規制当局と業界関係者間の連携によって、イノベーションとコンプライアンス義務のバランスを取ることが必要となります。
金融市場におけるAIの展望
市場は、製品タイプ、テクノロジー、展開タイプ、アプリケーション、エンドユーザーに基づいてセグメント化されています。
- 製品タイプ別
製品タイプ別に見ると、金融AI市場は、アルゴリズム取引、ERPおよび金融システム、チャットボットおよびバーチャルアシスタント、自動照合ソリューション、インテリジェント文書処理、ガバナンス・リスク・コンプライアンス(GRC)ソフトウェア、買掛金/売掛金自動化ソフトウェア、ロボアドバイザー、経費管理システム、コンプライアンス自動化プラットフォーム、引受ツールに分類されます。これらの中で、アルゴリズム取引は2024年に市場を席巻し、大量のデータをリアルタイムで処理し、非常に効率的で低遅延の取引決定を下す能力により、最大の収益シェアを占めました。金融機関は、投資戦略の最適化、人間のバイアスの低減、そして変動の激しい市場における競争優位性の獲得のために、アルゴリズム取引に大きく依存しており、AI主導の金融業務の基盤となっています。
ロボアドバイザー分野は、ミレニアル世代と個人投資家の間でデジタル資産管理ツールの普及が進むことに牽引され、2025年から2032年にかけて最も高い成長が見込まれています。ロボアドバイザーは低コストで自動化されたポートフォリオ管理を提供し、金融サービスへのアクセスが不十分な層にも金融へのアクセスを提供します。パーソナライズされた投資戦略への需要の高まりと、動的なリバランスや税務最適化といったAIを活用したアドバイザリー機能の組み合わせにより、ロボアドバイザーの世界的な普及が加速すると予想されます。
- テクノロジー別
技術に基づいて、市場は生成AI、自然言語処理(NLP)、予測分析、その他に分類されます。2024年には、リスクモデリング、信用スコアリング、財務予測における重要な役割を担う予測分析が市場を席巻しました。銀行や保険会社は、不正検出の強化、投資判断の最適化、顧客行動の予測のために予測モデルを活用しています。構造化・非構造化の財務データを実用的なインサイトに変換する能力により、予測分析は様々な金融業務に不可欠なものとなっています。
生成AIセグメントは、金融におけるプロセス自動化と顧客エンゲージメントに革命をもたらし、2025年から2032年にかけて最も高いCAGRで成長すると予想されています。生成AIツールは、インテリジェントなレポート生成、会話型金融アシスタント、そして顧客オンボーディングエクスペリエンスの強化に活用されています。高度にパーソナライズされた金融商品の提供、リスクシナリオのシミュレーション、そして業務効率の向上といった可能性を秘めており、生成AIは金融サービスの未来にとって最も変革的なテクノロジーとして位置付けられています。
- 展開タイプ別
導入タイプに基づいて、市場はオンプレミスとクラウドに分類されます。2024年には、クラウド導入セグメントが75.5%という最大の市場シェアを占めました。これは、その拡張性、費用対効果、そしてAI駆動型分析プラットフォームとの統合の容易さによるものです。金融機関におけるクラウドベースのAIは、業務の効率化、リモートアクセスの促進、そしてITインフラへの多額のコスト負担なしにリアルタイムの意思決定の強化を可能にします。
一方、オンプレミス導入セグメントは、規制上の懸念や機密性の高い金融環境におけるデータプライバシー要件により、組織が社内インフラを維持する傾向にあるため、最も高い成長率を記録すると予測されています。特にデータ主権に関する法律が厳格な地域においては、大手金融機関や政府規制対象機関は、セキュリティ、コンプライアンス、そしてミッションクリティカルなアプリケーションに対するより厳格な管理を確保するため、オンプレミスソリューションを好んでいます。
- アプリケーション別
アプリケーション別に見ると、市場は不正検出、リスク管理、トレンド分析、財務計画、予測に分類されます。サイバー攻撃、個人情報窃盗、金融犯罪の巧妙化が進む中、2024年には不正検出が市場を席巻しました。AIベースの不正検出システムは、リアルタイムの異常検出、取引監視、行動分析を活用し、誤検知を大幅に削減しながら、顧客資産と組織の評判の両方を守ります。
ファイナンシャルプランニング分野は、消費者と企業が個人の財務、退職プラン、そして企業の予算管理にAIを活用したツールを導入するケースが増えていることから、2025年から2032年にかけて最も高い成長が見込まれています。これらのプラットフォームは、AIアルゴリズムを活用し、カスタマイズされたアドバイスの提供、貯蓄の自動化、そして税務計画の最適化を実現することで、よりアクセスしやすく正確なファイナンシャルプランニングを実現します。ロボアドバイザーサービスと民主化された財務管理への需要の高まりも、この分野の勢いをさらに加速させています。
- エンドユーザー別
エンドユーザー別に見ると、市場は銀行、保険、投資・資産運用、フィンテック、資本市場/レグテックに分類されます。2024年には銀行が最大の市場シェアを占めましたが、これは法人向け、個人向け、投資銀行業務におけるAIの広範な導入によるものです。AIは、チャットボットによる顧客体験の向上、融資プロセスの最適化、そして堅牢な不正検出メカニズムの実現に大きく貢献しています。銀行セクターは、AIの早期導入と多額のIT支出能力により、金融分野におけるAI市場における優位性を確固たるものにしています。
フィンテック分野は、ブロックチェーン、暗号通貨、ピアツーピアレンディングプラットフォームにおける急速なイノベーションとAI活用ソリューションへの需要に牽引され、予測期間中に最も速いペースで成長すると予想されています。スタートアップ企業やデジタルネイティブ企業は、信用スコアリング、顧客認証、リアルタイム決済にAIを積極的に導入し、より効率的でスケーラブルな金融サービスを提供しようとしています。フィンテックの破壊的なアプローチと、サービスが行き届いていない市場への注力により、フィンテックはAI金融エコシステムにおいて最も急速に拡大するエンドユーザーカテゴリーとなっています。
金融市場におけるAIの地域分析
- 北米は、銀行、保険、フィンテックの各セクターでAI主導のソリューションが急速に導入されたことにより、2024年には金融AI市場において最大の収益シェア43%を獲得し、市場を席巻した。
- この地域の強力な技術インフラ、高いIT支出能力、AIイノベーションに対する好ましい規制支援が、金融機関におけるAI導入の普及を推進している。
- 高度な不正検出、アルゴリズム取引、ロボアドバイザーサービスに対する需要の増加により、消費者向けと企業向けの両方の金融アプリケーションでAIの導入が強化され続けています。
米国の金融市場におけるAIの洞察
2024年には、米国が北米で最大の収益シェアを占めました。これは、コーポレートバンキング、投資運用、保険分野におけるAIの早期導入が牽引役となっています。米国の金融機関は、リスク管理、パーソナライズされた金融サービス、デジタルアドバイザリープラットフォームにおいてAIを積極的に活用しています。IBM、Microsoft、GoogleといったAI技術のリーディングカンパニーの強力なプレゼンスと、フィンテック系スタートアップへの投資増加が相まって、市場の成長をさらに加速させています。規制遵守と消費者データ保護への重点化も、ガバナンス、リスク管理、コンプライアンスソリューションにおけるAI導入を促進しています。
欧州金融市場におけるAIの洞察
欧州の金融AI市場は、GDPRなどの強力な規制枠組みと、コンプライアンスおよび不正防止におけるAIへの依存度の高まりに支えられ、予測期間中、安定したCAGRで成長すると予測されています。デジタルバンキング、保険自動化、ロボアドバイザーサービスにおけるAI導入の増加は、欧州の金融エコシステムを変革させており、消費者はAI主導のパーソナライズされた金融プランニングソリューションに強い関心を示しています。この市場は、成長するフィンテックエコシステムと、金融サービス分野におけるAIの研究と導入を支援する政府の取り組みによってさらに推進されています。
英国の金融市場におけるAIの洞察
英国は、ロンドンの強力なフィンテック拠点と、投資銀行業務および資産管理業務におけるAIの広範な導入を背景に、金融分野におけるAI市場の大幅な成長が見込まれています。金融機関は、取引の最適化、規制遵守、顧客エンゲージメントの自動化にAIを活用しています。サイバーセキュリティの脅威の高まりと規制強化も、AIを活用した不正検出ソリューションの導入を促進しています。
ドイツ金融市場におけるAIの洞察
ドイツの金融分野におけるAI市場は、堅調な銀行セクターと先進的な産業経済に支えられ、着実な成長が見込まれています。ドイツの銀行と保険会社は、AIを活用したコンプライアンス自動化、プロセス最適化、そしてパーソナライズされた顧客エンゲージメントツールに注力しています。デジタルイノベーションへの注力と、データセキュリティとプライバシーへの高い意識が相まって、金融機関におけるAI導入は引き続き加速しています。
アジア太平洋地域の金融市場におけるAIの洞察
アジア太平洋地域の金融分野におけるAI市場は、急速なデジタル化、可処分所得の増加、そして中国、日本、インドなどの国々におけるフィンテック・エコシステムの拡大を背景に、2025年から2032年にかけて最も高いCAGRで成長すると予測されています。キャッシュレス経済とスマート金融インフラを推進する政府の取り組みの増加は、銀行、保険、決済システムにおける大規模なAI導入を後押ししています。また、アジア太平洋地域はAI主導のフィンテック・イノベーションの拠点としても台頭しており、スタートアップ企業や既存企業がブロックチェーン・プラットフォーム、融資システム、ロボアドバイザー・サービスにAIを統合しています。
日本における金融AI市場の洞察
日本の金融分野におけるAI市場は、国内の強力なデジタルインフラ、急速な自動化導入、そしてハイテク金融ソリューションへの需要を背景に、勢いを増しています。日本は、不正防止、取引自動化、そして顧客中心の銀行ソリューションにおいてAIを重視しています。高齢化の進展も、退職や投資ニーズに対応するためのAIを活用したアドバイザリーサービスやファイナンシャルプランニングサービスの需要を高めています。
中国金融市場におけるAIの洞察
中国は、フィンテック産業の拡大、AI開発に対する政府の強力な支援、そしてモバイルベースの金融サービスの消費者による普及拡大に牽引され、2024年にはアジア太平洋地域において最大の市場収益シェアを占めました。中国は、アリババ、テンセント、バイドゥといったテクノロジー大手の支援を受け、デジタル決済、ロボアドバイザープラットフォーム、不正検知といった分野におけるAI活用においてリードしています。急速な都市化、中流階級の増加、そしてスマートシティ開発への取り組みは、金融分野におけるAIの大規模な導入を引き続き推進しています。
金融市場におけるAIのシェア
金融業界における AI は、主に次のような定評のある企業によって主導されています。
- Scienaptic AI(米国)
- ゼストAI(米国)
- HighRadius(米国)
- ワーキバ(米国)
- オラクル(米国)
- マルチビュー(米国)
- ブライトリオン(米国)
- スタンプリ(米国)
- テメノス(スイス)
- アップスタート(米国)
- ワークフュージョン(米国)
- アクセンチュア(アイルランド)
- Amazon Web Services(AWS)(米国)
- FICO(米国)
- マイクロソフト(米国)
- NVIDIA(米国)
- セールスフォース(米国)
- SAP(ドイツ)
金融市場におけるグローバルAIの最新動向
- ニューヨークを拠点とするフィンテックスタートアップのAffinitiは、2025年5月、中小企業(SMB)向けにカスタマイズされたAI搭載CFOエージェントを導入しました。これらのデジタルアシスタントは、銀行業務、請求書の支払い、売上分析など、包括的な財務業務を管理します。Affinitiは、ヘルスケアや自動車などの業界に注力することで、財務専門知識の民主化を目指しており、中小企業は社内に大規模な財務チームを必要とせずに、データに基づいた意思決定を行うことができます。この動きにより、Affinitiは中小企業向け財務セクターにおける重要なプレーヤーとしての地位を確立し、アクセス可能な財務管理ツールにおける重大なギャップを埋めることができます。
- 2025年4月、IBMは金融取引における疑わしい活動や潜在的な不正リスクを特定できる機械学習モデルを統合し、AI不正検知ソリューションを進化させました。これらのAIモデルは、大規模なデータセットを分析することで、不正行為を示唆する可能性のあるパターンを認識し、金融機関が金融犯罪を未然に防ぐための積極的な対策を講じることを可能にします。この強化は、金融セクターにおけるセキュリティとコンプライアンスの強化にAIを活用するというIBMのコミットメントを強調するものです。
- AIを活用した金融ソリューションのリーディングプロバイダーであるHighRadiusは、2025年2月、予測分析とリアルタイムの意思決定機能を組み込んだ高度な財務管理ツールを発表しました。これらのツールは、財務チームの資金予測、流動性管理、コンプライアンスプロセスの合理化を目的としています。HighRadiusはAIを活用することで、財務業務の精度と効率性を向上させ、組織の財務戦略の最適化とリスク軽減を実現します。
- 2023年6月、財務自動化企業であるRampは、AIを活用した顧客サポートプラットフォームであるCohere.ioを買収しました。Cohere.ioの生成AIと機械学習に関する専門知識により、RampはGPT駆動型のベンダー価格情報や自動会計支援などのサービスを強化することができます。この買収により、高度なAI機能を統合することで財務自動化分野におけるRampの地位が強化され、顧客の業務効率と顧客サポートが向上します。
- 2023年3月、ベイジアンネットワークのパイオニアであるベイジアンは、Causality Linkと提携し、AIを活用した金融意思決定のためのインサイトを提供しました。この協業は、ベイジアンの確率モデリングの専門知識と、Causality Linkの金融データから因果関係を抽出する能力を融合させ、意思決定者に市場動向へのより深い理解を提供します。この提携は、予測分析とリスク評価モデルを強化し、より情報に基づいた戦略的な金融意思決定を支援することを目指しています。
SKU-
世界初のマーケットインテリジェンスクラウドに関するレポートにオンラインでアクセスする
- インタラクティブなデータ分析ダッシュボード
- 成長の可能性が高い機会のための企業分析ダッシュボード
- カスタマイズとクエリのためのリサーチアナリストアクセス
- インタラクティブなダッシュボードによる競合分析
- 最新ニュース、更新情報、トレンド分析
- 包括的な競合追跡のためのベンチマーク分析のパワーを活用
調査方法
データ収集と基準年分析は、大規模なサンプル サイズのデータ収集モジュールを使用して行われます。この段階では、さまざまなソースと戦略を通じて市場情報または関連データを取得します。過去に取得したすべてのデータを事前に調査および計画することも含まれます。また、さまざまな情報ソース間で見られる情報の不一致の調査も含まれます。市場データは、市場統計モデルと一貫性モデルを使用して分析および推定されます。また、市場シェア分析と主要トレンド分析は、市場レポートの主要な成功要因です。詳細については、アナリストへの電話をリクエストするか、お問い合わせをドロップダウンしてください。
DBMR 調査チームが使用する主要な調査方法は、データ マイニング、データ変数が市場に与える影響の分析、および一次 (業界の専門家) 検証を含むデータ三角測量です。データ モデルには、ベンダー ポジショニング グリッド、市場タイムライン分析、市場概要とガイド、企業ポジショニング グリッド、特許分析、価格分析、企業市場シェア分析、測定基準、グローバルと地域、ベンダー シェア分析が含まれます。調査方法について詳しくは、お問い合わせフォームから当社の業界専門家にご相談ください。
カスタマイズ可能
Data Bridge Market Research は、高度な形成的調査のリーダーです。当社は、既存および新規のお客様に、お客様の目標に合致し、それに適したデータと分析を提供することに誇りを持っています。レポートは、対象ブランドの価格動向分析、追加国の市場理解 (国のリストをお問い合わせください)、臨床試験結果データ、文献レビュー、リファービッシュ市場および製品ベース分析を含めるようにカスタマイズできます。対象競合他社の市場分析は、技術ベースの分析から市場ポートフォリオ戦略まで分析できます。必要な競合他社のデータを、必要な形式とデータ スタイルでいくつでも追加できます。当社のアナリスト チームは、粗い生の Excel ファイル ピボット テーブル (ファクト ブック) でデータを提供したり、レポートで利用可能なデータ セットからプレゼンテーションを作成するお手伝いをしたりすることもできます。

