Global AI-Based Medical Billing Fraud Detection Market Size, Share, and Trends Analysis Report – Industry Overview and Forecast to 2032

Request for TOC Request for TOC Speak to Analyst Speak to Analyst Free Sample Report Free Sample Report Inquire Before Buying Inquire Before Buy Now Buy Now

Global AI-Based Medical Billing Fraud Detection Market Size, Share, and Trends Analysis Report – Industry Overview and Forecast to 2032

  • Medical Devices
  • May 2025
  • Global
  • 350 Pages
  • No of Tables: 220
  • No of Figures: 60

Circumvent the Tariff challenges with an agile supply chain Consulting

Supply Chain Ecosystem Analysis now part of DBMR Reports

Global Ai Based Medical Billing Fraud Detection Market

Market Size in USD Billion

CAGR :  % Diagram

Bar chart comparing the Global Ai Based Medical Billing Fraud Detection Market size in 2024 - 1.19 and 2032 - 5.53, highlighting the projected market growth. USD 1.19 Billion USD 5.53 Billion 2024 2032
Diagram Forecast Period
2025 –2032
Diagram Market Size (Base Year)
USD 1.19 Billion
Diagram Market Size (Forecast Year)
USD 5.53 Billion
Diagram CAGR
%
Diagram Major Markets Players
  • Optum
  • Inc. (U.S.)
  • Cognizant (U.S.)
  • Oracle (U.S.)
  • Deloitte (U.S.)

Global AI-Based Medical Billing Fraud Detection Market Segmentation, By Component (Software and Services), Deployment mode (On-premises and Cloud-based), Type of analytics (Descriptive Analytics, Predictive Analytics, and Prescriptive Analytics), Application (Insurance Claims Review, Payment Integrity, and Identity Management), End User (Private Insurance Payers, Public/Government Agencies, and Third-Party Service Providers)- Industry Trends and Forecast to 2032

AI-Based Medical Billing Fraud Detection Market Z

 AI-Based Medical Billing Fraud Detection Market Size

  • The global AI-based medical billing fraud detection market size was valued at USD 1.19 billion in 2024 and is expected to reach USD 5.53 billion by 2032, at a CAGR of 21.20% during the forecast period
  • This growth is driven by factors such as the increasing incidence of healthcare fraud, rising healthcare expenditures, and growing adoption of AI and analytics technologies to enhance billing accuracy and reduce financial losses

AI-Based Medical Billing Fraud Detection Market Analysis

  • AI-based medical billing fraud detection systems leverage machine learning and data analytics to identify anomalies and prevent fraudulent claims in healthcare billing, ensuring compliance and financial integrity
  • The market growth is significantly driven by increasing healthcare fraud cases, rising healthcare costs, and the growing need for automation and accuracy in medical billing processes
  • North America is expected to dominate the AI-based medical billing fraud detection market with a market share of 45.5%, due to advanced healthcare IT infrastructure, high adoption of AI technologies, and a strong presence of key market players
  • Asia-Pacific is expected to be the fastest growing region in the AI-based medical billing fraud detection market with a market share of 16.5%, during the forecast period due to the rapid expansion of healthcare infrastructure, increasing digitalization, and rising fraud awareness
  • Software segment is expected to dominate the market with a market share of 60.5% due to its ability to automate complex billing processes, enhance detection accuracy, and reduce manual errors

Report Scope and AI-Based Medical Billing Fraud Detection Market Segmentation  

Attributes

AI-Based Medical Billing Fraud Detection Key Market Insights

Segments Covered

  • By Component: Software and Services
  • By Deployment Mode: On-premises and Cloud-based
  • By Type of analytics: Descriptive Analytics, Predictive Analytics, and Prescriptive Analytics
  • By Application: Insurance Claims Review, Payment Integrity, and Identity Management
  • By End User: Private Insurance Payers, Public/Government Agencies, and Third-Party Service Providers

Countries Covered

North America

  • U.S.
  • Canada
  • Mexico

Europe

  • Germany
  • France
  • U.K.
  • Netherlands
  • Switzerland
  • Belgium
  • Russia
  • Italy
  • Spain
  • Turkey
  • Rest of Europe

Asia-Pacific

  • China
  • Japan
  • India
  • South Korea
  • Singapore
  • Malaysia
  • Australia
  • Thailand
  • Indonesia
  • Philippines
  • Rest of Asia-Pacific

Middle East and Africa

  • Saudi Arabia
  • U.A.E.
  • South Africa
  • Egypt
  • Israel
  • Rest of Middle East and Africa

South America

  • Brazil
  • Argentina
  • Rest of South America

Key Market Players

  • Optum, Inc. (U.S.)
  • Cognizant (U.S.)
  • Oracle (U.S.)
  • Deloitte (U.S.)
  • MedAI Solution (U.S.)
  • IBM (U.S.)
  • SAS Institute Inc. (U.S.)
  • MCKESSON CORPORATION (U.S.)
  • HCL Technologies Limited (India)
  • Infosys (India)
  • Wipro (India)
  • Tata Consultancy Services Limited (India)
  • Accenture (Ireland)
  • Capgemini (France)
  • NTT Data Group Corporation (Japan)
  • DXC Technology Company (U.S.)
  • Epic Systems Corporation (U.S.)
  • Veradigm LLC (U.S.)

Market Opportunities

  • Leveraging AI for Enhanced Fraud Detection and Automation
  • Rising adoption of AI-powered automation by healthcare payers

Value Added Data Infosets

In addition to the insights on market scenarios such as market value, growth rate, segmentation, geographical coverage, and major players, the market reports curated by the Data Bridge Market Research also include import export analysis, production capacity overview, production consumption analysis, price trend analysis, climate change scenario, supply chain analysis, value chain analysis, raw material/consumables overview, vendor selection criteria, PESTLE Analysis, Porter Analysis, and regulatory framework.

AI-Based Medical Billing Fraud Detection Market Trends

“Advancements in AI Algorithms & Predictive Analytics for Fraud Prevention”

  • One prominent trend in the evolution of AI-based medical billing fraud detection is the increasing integration of advanced machine learning algorithms and predictive analytics
  • These innovations enhance fraud detection by enabling systems to automatically analyze vast amounts of billing data, identify patterns, and predict fraudulent activities before they occur 
    • For instance, AI models are now capable of flagging inconsistencies, overbilling, or suspicious patterns in real-time, helping insurers and healthcare providers mitigate financial losses. This is particularly beneficial for detecting complex fraud schemes, such as phantom billing and unbundling 
  • These advancements are transforming fraud detection processes, improving financial accuracy, and driving the demand for next-generation fraud detection solutions with cutting-edge AI capabilities

AI-Based Medical Billing Fraud Detection Market Dynamics

Driver

“Rising Incidence of Healthcare Fraud and Billing Errors”

  • The increasing incidence of healthcare fraud, billing errors, and fraudulent claims is significantly driving the demand for AI-based medical billing fraud detection systems
  • As healthcare systems become more digitized, fraudulent activities such as phantom billing, upcoding, and unbundling are becoming more sophisticated, leading to higher financial losses
  • The demand for AI-driven solutions is rising as these systems can efficiently analyze large volumes of billing data to detect anomalies and prevent fraud in real-time, ensuring compliance and reducing manual intervention

For instance,

  • According to a report by the National Health Care Anti-Fraud Association (NHCAA), healthcare fraud costs the U.S. alone approximately USD 68 billion annually. The growing need for efficient fraud prevention and risk mitigation solutions is driving the market for AI-based fraud detection technologies 
  • As a result, the rising incidence of fraud and billing errors is fueling the adoption of AI-based solutions, which improve the accuracy and efficiency of detecting fraudulent claims in healthcare billing

Opportunity

“Leveraging AI for Enhanced Fraud Detection and Automation”

  • AI-powered fraud detection systems can significantly enhance the accuracy of billing audits, automate the detection of fraudulent activities, and improve overall operational efficiency, enabling healthcare providers and insurers to make better-informed decisions
  • AI algorithms can analyze large volumes of billing data in real-time, flagging suspicious claims and identifying patterns of fraudulent behavior, such as duplicate claims, unbundling, or phantom billing
  • In addition, AI-powered systems can assist in predictive analytics, helping organizations proactively identify potential fraud risks before they occur, reducing financial losses and improving compliance

For instance,

  • In 2025, according to a report from Healthcare Insurance News, AI algorithms are being used to automate fraud detection processes, saving insurers millions of dollars annually by identifying fraud schemes such as overbilling and upcoding. AI’s ability to analyze large datasets quickly allows for more efficient fraud prevention, improving response times and ensuring timely interventions 
  • The integration of AI in medical billing fraud detection systems can lead to reduced administrative costs, faster claim processing, and increased accuracy in identifying fraudulent claims, ultimately improving the financial integrity of healthcare organizations

Restraint/Challenge

“High Implementation and Maintenance Costs”

  • The high cost of implementing and maintaining AI-based fraud detection systems presents a significant challenge, particularly for smaller healthcare organizations or insurance companies with limited budgets
  • These AI-powered solutions require substantial investment in software, hardware infrastructure, and ongoing maintenance, which can range from thousands to millions of dollars, depending on the scale of implementation
  • This financial barrier may deter smaller healthcare providers and insurers from adopting AI solutions, leading them to rely on traditional methods of fraud detection, which may be less efficient and more prone to errors

For instance,

  • In December 2024, according to a report by Forrester Research, the upfront costs of deploying AI-based fraud detection systems can be a significant hurdle for smaller organizations. These costs can include not only purchasing the software and hardware but also training personnel to use these complex systems effectively 
  • Consequently, the high initial investment and maintenance costs may limit the widespread adoption of AI-powered solutions, especially in regions with less financial flexibility, hindering the overall growth of the AI-based medical billing fraud detection market

AI-Based Medical Billing Fraud Detection Market Scope

The market is segmented on the basis of component, deployment mode, type of analytics, application, and end user

Segmentation

Sub-Segmentation

By Component

  • Software
  • Services

By Deployment Mode

      • On-premises
      • Cloud-based

By Type of Analytics

  • Descriptive Analytics
  • Predictive Analytics
  • Prescriptive Analytics

By Application

  • Insurance Claims Review
  • Payment Integrity
  • Identity Management

By End User

  • Private Insurance Payers
  • Public/Government Agencies
  • Third-Party Service Providers

In 2025, the software is projected to dominate the market with a largest share in component segment

The software segment is expected to dominate the AI-based medical billing fraud detection market with the largest share of 60.5% in 2025 due to its ability to automate complex billing processes, enhance detection accuracy, and reduce manual errors. AI-powered software enables real-time analysis of large datasets, helping healthcare providers and insurers identify fraudulent claims more efficiently. In addition, the integration of machine learning and predictive analytics further strengthens fraud prevention capabilities

The descriptive analytics is expected to account for the largest share during the forecast period in type of analytics market

In 2025, the descriptive analytics segment is expected to dominate the market with the largest market share of 41.8% due to its foundational role in fraud detection. It enables organizations to analyze historical billing data to uncover patterns, trends, and anomalies associated with fraudulent activities. This insight is critical for building predictive models and informing strategic decision-making, making it widely adopted across healthcare and insurance sectors

AI-Based Medical Billing Fraud Detection Market Regional Analysis

“North America Holds the Largest Share in the AI-Based Medical Billing Fraud Detection Market”

  • North America dominates the AI-based medical billing fraud detection market with a market share of estimated 45.5%, driven, by advanced healthcare IT infrastructure, high adoption of AI technologies, and a strong presence of key market players
  • U.S. holds a market share of 42.7%, due to the increasing need for fraud prevention amid rising healthcare fraud cases, high healthcare spending, and government support for adopting AI in healthcare systems
  • The availability of well-established regulatory frameworks, such as HIPAA, and growing investments in healthcare technology further strengthen the market, leading to higher demand for AI-based fraud detection solutions
  • In addition, the increasing adoption of digital health records and claim automation, along with heightened awareness of fraud risks, is fueling market growth across the region

“Asia-Pacific is Projected to Register the Highest CAGR in the AI-Based Medical Billing Fraud Detection Market”

  • Asia-Pacific is expected to witness the highest growth rate in the AI-based medical billing fraud detection market with a market share of 16.5%, driven by to the rapid expansion of healthcare infrastructure, increasing digitalization, and rising fraud awareness
  • Countries such as China, India, and Japan are emerging as key markets, driven by their large populations, expanding healthcare sectors, and the growing incidence of healthcare fraud
  • Japan, with its advanced healthcare IT infrastructure and focus on cutting-edge technology, remains a crucial market for AI-based fraud detection solutions. The country continues to lead in the adoption of AI and automation in healthcare
  • India is projected to register the highest CAGR, driven by rapid healthcare sector growth, increasing healthcare fraud cases, and expanding digital health initiatives aimed at improving billing accuracy and fraud prevention

AI-Based Medical Billing Fraud Detection Market Share

The market competitive landscape provides details by competitor. Details included are company overview, company financials, revenue generated, market potential, investment in research and development, new market initiatives, global presence, production sites and facilities, production capacities, company strengths and weaknesses, product launch, product width and breadth, application dominance. The above data points provided are only related to the companies' focus related to market.

The Major Market Leaders Operating in the Market Are:

  • Optum, Inc. (U.S.)
  • Cognizant (U.S.)
  • Oracle (U.S.)
  • Deloitte (U.S.)
  • MedAI Solution (U.S.)
  • IBM (U.S.)
  • SAS Institute Inc. (U.S.)
  • MCKESSON CORPORATION (U.S.)
  • HCL Technologies Limited (India)
  • Infosys (India)
  • Wipro (India)
  • Tata Consultancy Services Limited (India)
  • Accenture (Ireland)
  • Capgemini (France)
  • NTT Data Group Corporation (Japan)
  • DXC Technology Company (U.S.)
  • Epic Systems Corporation (U.S.)
  • Veradigm LLC (U.S.)

Latest Developments in Global AI-Based Medical Billing Fraud Detection Market

  • In May 2025, Optum introduced Optum Integrity One, an AI-driven integrated revenue cycle platform designed to enhance clinical documentation and coding accuracy. The platform automates tasks from point of care through final coding, streamlining the billing process and reducing administrative burdens for healthcare providers
  • In April 2025, Oracle introduced advanced AI-driven tools to bolster fraud detection in medical claims. These tools leverage machine learning and natural language processing to analyze vast amounts of healthcare data, identifying patterns indicative of fraudulent activities such as upcoding and phantom billing. By automating the detection process, Oracle aims to reduce false claims and enhance the accuracy of reimbursements
  • In April 2025, MedAI Solution highlighted the use of AI in real-time medical billing fraud detection. By employing natural language processing, machine learning, and automation within healthcare revenue cycle management systems, AI can proactively identify and prevent fraudulent billing activities before claims are processed, thereby safeguarding healthcare finances
  • In April 2025, Deloitte published insights into the application of AI-powered multimodal technologies in detecting fraudulent behaviors across the insurance claim lifecycle. These technologies analyze various data sources to identify anomalies and potential fraud, helping insurers mitigate financial losses and improve operational efficiency
  • In April 2024, Cognizant partnered with FICO to launch a cloud-based real-time payment fraud prevention solution. This AI-powered system aims to help banks and payment providers detect and prevent fraudulent transactions in real-time, enhancing security in the digital payment landscape 


SKU-

Get online access to the report on the World's First Market Intelligence Cloud

  • Interactive Data Analysis Dashboard
  • Company Analysis Dashboard for high growth potential opportunities
  • Research Analyst Access for customization & queries
  • Competitor Analysis with Interactive dashboard
  • Latest News, Updates & Trend analysis
  • Harness the Power of Benchmark Analysis for Comprehensive Competitor Tracking
Request for Demo

Research Methodology

Data collection and base year analysis are done using data collection modules with large sample sizes. The stage includes obtaining market information or related data through various sources and strategies. It includes examining and planning all the data acquired from the past in advance. It likewise envelops the examination of information inconsistencies seen across different information sources. The market data is analysed and estimated using market statistical and coherent models. Also, market share analysis and key trend analysis are the major success factors in the market report. To know more, please request an analyst call or drop down your inquiry.

The key research methodology used by DBMR research team is data triangulation which involves data mining, analysis of the impact of data variables on the market and primary (industry expert) validation. Data models include Vendor Positioning Grid, Market Time Line Analysis, Market Overview and Guide, Company Positioning Grid, Patent Analysis, Pricing Analysis, Company Market Share Analysis, Standards of Measurement, Global versus Regional and Vendor Share Analysis. To know more about the research methodology, drop in an inquiry to speak to our industry experts.

Customization Available

Data Bridge Market Research is a leader in advanced formative research. We take pride in servicing our existing and new customers with data and analysis that match and suits their goal. The report can be customized to include price trend analysis of target brands understanding the market for additional countries (ask for the list of countries), clinical trial results data, literature review, refurbished market and product base analysis. Market analysis of target competitors can be analyzed from technology-based analysis to market portfolio strategies. We can add as many competitors that you require data about in the format and data style you are looking for. Our team of analysts can also provide you data in crude raw excel files pivot tables (Fact book) or can assist you in creating presentations from the data sets available in the report.

Frequently Asked Questions

The global AI-based medical billing fraud detection market size was valued at USD 1.19 billion in 2024.
The global AI-based medical billing fraud detection market is to grow at a CAGR of 21.20% during the forecast period of 2025 to 2032.
The AI-based medical billing fraud detection market is segmented into five notable segments based on component, deployment mode, type of analytics, application, and end user. On the basis of component, the market is segmented into software and services. On the basis of deployment mode, the market is segmented into on-premises and cloud-based. On the basis of type of analytics, the market is segmented into descriptive analytics, predictive analytics, and prescriptive analytics. On the basis of application, the market is segmented into Insurance claims review, payment integrity, and identity management. On the basis of application, the market is segmented into Insurance claims review, payment integrity, and identity management. On the basis of end user, the market is segmented into private insurance payers, public/government agencies, and third-party service providers
Companies such as Optum, Inc. (U.S.), Cognizant (U.S.), Oracle (U.S.), Deloitte (U.S.) , MedAI Solution (U.S.), are the major companies in the AI-based medical billing fraud detection market.
In May 2025, Optum introduced Optum Integrity One, an AI-driven integrated revenue cycle platform designed to enhance clinical documentation and coding accuracy. The platform automates tasks from point of care through final coding, streamlining the billing process and reducing administrative burdens for healthcare providers. In April 2025, Oracle introduced advanced AI-driven tools to bolster fraud detection in medical claims. These tools leverage machine learning and natural language processing to analyze vast amounts of healthcare data, identifying patterns indicative of fraudulent activities such as upcoding and phantom billing. By automating the detection process, Oracle aims to reduce false claims and enhance the accuracy of reimbursements
The countries covered in the AI-based medical billing fraud detection market are U.S., Canada, Mexico, Germany, France, U.K., Netherlands, Switzerland, Belgium, Russia, Italy, Spain, Turkey, rest of Europe, China, Japan, India, South Korea, Singapore, Malaysia, Australia, Thailand, Indonesia, Philippines, rest of Asia-Pacific, Brazil, Argentina, rest of South America, Saudi Arabia, U.A.E., South Africa, Egypt, Israel, and rest of Middle East and Africa.
The advancements in AI algorithms & predictive analytics for fraud prevention, is emerging as a pivotal trend driving the global AI-based medical billing fraud detection market.
The major factors driving the growth of the AI-based medical billing fraud detection market are rising incidence of healthcare fraud and billing errors and growing adoption of ai and analytics technologies to enhance billing accuracy and reduce financial losses
The primary challenges include high implementation and maintenance costs and data privacy concerns and the complexity of integrating AI systems with existing healthcare IT infrastructure
The software segment is expected to dominate the market with a market share of 60.5% due to its ability to automate complex billing processes, enhance detection accuracy, and reduce manual errors
U.S. is expected to dominate the global AI-based medical billing fraud detection market with a market share of 42.7%, particularly in the North America region. This dominance is attributed to its to increasing need for fraud prevention amid rising healthcare fraud cases, high healthcare spending, and government support for adopting AI in healthcare systems
North America is expected to dominate the AI-based medical billing fraud detection market with a market share of 45.5%, due to advanced healthcare IT infrastructure, high adoption of AI technologies, and a strong presence of key market players
India is projected to register the highest CAGR, driven by rapid healthcare sector growth, increasing healthcare fraud cases, and expanding digital health initiatives aimed at improving billing accuracy and fraud prevention

Industry Related Reports

Testimonial