Global Artificial Intelligence in Aviation Market - Industry Trends and Forecast to 2031

Request for TOC Request for TOC Speak to Analyst Speak to Analyst Buy Now Buy Now Inquire Before Buying Inquire Before Free Sample Report Free Sample Report

Global Artificial Intelligence in Aviation Market - Industry Trends and Forecast to 2031

  • Semiconductors and Electronics
  • Upcoming Report
  • Apr 2024
  • Global
  • 350 Pages
  • No of Tables: 60
  • No of Figures: 220

Global Artificial Intelligence in Aviation Market

Market Size in USD Billion

CAGR :  % Diagram

Diagram Forecast Period
2024 –2031
Diagram Market Size (Base Year)
USD 4.33 Billion
Diagram Market Size (Forecast Year)
USD 90.38 Billion
Diagram CAGR
%
Diagram Major Markets Players
  • - IBM
  • Microsoft
  • Amazon Web Services
  • Airbus S.A.S.
  • Xilinx

Global Artificial Intelligence in Aviation Market, By Offering (Services, Hardware, and Software), Technology (Computer Vision, Machine Learning, Context Awareness Computing, and Natural Language Processing), Application (Dynamic Pricing, Virtual Assistants, Flight Operations, Smart Maintenance, Manufacturing, Surveillance, Training, and Other Applications) – Industry Trends and Forecast to 2031.

Artificial Intelligence in Aviation Market

Artificial Intelligence in Aviation Market Analysis and Size

The artificial intelligence in aviation market is utilized for enhancing safety measures, optimizing operations, and improving passenger experience across various segments of the aviation industry. AI is applied in flight operations for route optimization, predictive maintenance to minimize downtime, and air traffic management for efficient navigation. For instance, Airbus utilizes AI algorithms to analyze aircraft data and predict potential failures, enabling proactive maintenance actions, thereby enhancing safety and reducing operational costs. Versatility in AI aviation extends to floor automation, customer service chatbots, and baggage handling optimization, transforming the industry.

Global artificial intelligence in aviation market size was valued at USD 4.33 billion in 2023 and is projected to reach a value of USD 90.38 billion by 2031, with a CAGR of 46.2% during the forecast period of 2024 to 2031. In addition to the insights on market scenarios such as market value, growth rate, segmentation, geographical coverage, and major players, the market reports curated by the Data Bridge Market Research also include in-depth expert analysis, geographically represented company-wise production and capacity, network layouts of distributors and partners, detailed and updated price trend analysis and deficit analysis of supply chain and demand.

Report Scope and Market Segmentation       

Report Metric

Details

Forecast Period

2024 to 2031

Base Year

2023

Historic Years

2022 (Customizable to 2016-2021)

Quantitative Units

Revenue in USD Billion, Volumes in Units, Pricing in USD

Segments Covered

Offering (Services, Hardware, and Software), Technology (Computer Vision, Machine Learning, Context Awareness Computing, and Natural Language Processing), Application (Dynamic Pricing, Virtual Assistants, Flight Operations, Smart Maintenance, Manufacturing, Surveillance, Training, and Other Applications)

Countries Covered

U.S., Canada, Mexic, Germany, Sweden, Poland, Denmark, Italy, U.K., France, Spain, Netherlands, Belgium, Switzerland, Turkey, Russia, Rest of Europe in Europe, Japan, China, India, South Korea, New Zealand, Vietnam, Australia, Singapore, Malaysia, Thailand, Indonesia, Philippines, Rest of Asia-Pacific, Brazil, Argentina, Rest of South America as a part of South America, U.A.E, Saudi Arabia, Oman, Qatar, Kuwait, South Africa, and Rest of Middle East and Africa

Market Players Covered

IBM (U.S.), Microsoft (U.S.), Amazon Web Services, Inc. (U.S.), Airbus S.A.S. (U.S.), Xilinx (U.S.), NVIDIA Corporation (U.S.), Intel Corporation (U.S.), General Electric (U.S.), Micron Technology, Inc., (U.S.),  , Lockheed Martin Corporation (U.S.),  SAMSUNG (Sout Korea), Thales(France), MINDTITAN  (Estonia), and Mitsubishi Electric Corporation (Japan) among others

Market Opportunities

  • Technological advancement in barcode reading
  • Crew training and simulation

Market Definition

Artificial intelligence in aviation refers to the use of computer systems to perform tasks that generally require human intelligence, such as piloting aircraft, managing air traffic, and analyzing data. AI enhances safety, efficiency, and decision-making in aviation by automating processes, detecting anomalies, and providing insights from vast amounts of information. It enables advancements such as autonomous flight, predictive maintenance, and personalized passenger experiences, transforming the industry.

Artificial Intelligence in Aviation Market Dynamics

Drivers

  • Enhanced Safety Measures Through AI Integration

AI algorithms analyze vast amounts of data from various sources including sensors, weather patterns, and historical flight data to predict potential safety hazards and mitigate risks proactively. These systems offer real-time monitoring of aircraft systems, airspace conditions, and pilot behavior, enabling rapid response to potential threats.  Through leveraging AI, airlines and aviation authorities can identify safety issues before they escalate, leading to fewer accidents, improved incident response, and ultimately, a safer environment for passengers, crew, and assets, thereby fostering trust and driving the adoption of AI technologies in the aviation industry.

For instance,

  • Major Germam airlines such as Lufthansa use AI algorithms to predict aircraft component failures, enhancing safety. Their predictive maintenance system analyzes data from sensors and historical records to preemptively address issues, reducing accidents and improving response
  • Streamlined Air Traffic Management Systems

AI technologies optimize airspace usage, route planning, and traffic flow management, reducing congestion and delays. AI enables more efficient and flexible decision-making by air traffic controllers by analyzing vast amounts of data, including flight trajectories, and airport operations. This results in enhanced safety, reduced fuel consumption and minimized environmental impact. In addition, AI-driven automation streamlines communication and coordination among stakeholders, improving overall operational efficiency. As air travel demand continues to grow, the adoption of AI in air traffic management becomes essential for managing increasing complexity, ensuring smoother operations, and driving market growth.

For instance,

  • NASA's Advanced Air Mobility project represents a development in urban air transportation. The project aims to optimize routes, minimize congestion, and reduce environmental impact by leveraging AI algorithms to analyze flight trajectories and airspace data. This initiative underscores the potential of AI-driven solutions to revolutionize air mobility, ensuring safer and more efficient transportation in increasingly congested urban environments

Opportunities

  • Technological Advancement in Barcode Reading

Airlines can optimize routes to avoid hazardous weather conditions, reducing the risk of turbulence, lightning strikes, and other weather-related incidents by integrating these forecasts into flight planning and decision-making processes. This proactive approach enhances flight safety, minimizes disruptions, and improves passenger experience. As airlines prioritize safety and efficiency, the demand for AI-powered weather forecasting solutions continues to grow, driving innovation and investment in the aviation industry.

  • Crew Training and Simulation

Use AI-driven simulations and training systems for pilot and crew training. AI can simulate various scenarios, environments, and emergencies to train pilots and crew members effectively, improve decision-making skills, and enhance safety measures. AI enables dynamic scenario generation, providing tailored training experiences for different skill levels and aircraft types. Moreover, continuous data analysis from training sessions empowers personalized feedback and performance evaluation, fostering continuous improvement. Ultimately, AI-driven training solutions contribute to elevated safety standards, ensuring aviation professionals are well-prepared to handle any challenge they may encounter in the skies.

Restraints/Challenges

  • Dependency on Reliable Internet Connectivity

AI systems thrive on real-time data processing and communication, they are inherently reliant on uninterrupted internet access. In remote or airspace-constrained regions, where connectivity may be limited or intermittent, the effectiveness of AI applications can be compromised. This dependency introduces vulnerabilities to critical functions such as flight planning, weather monitoring, and communication with ground control. Moreover, in-flight connectivity solutions may not always guarantee the level of reliability required for seamless AI operations. As a result, the aviation industry faces challenges in fully leveraging AI technologies across its operations, hindering widespread adoption and innovation.

  • Limited Availability of Skilled AI Professionals

Developing and implementing AI solutions tailored to aviation require specialized expertise in both AI technologies and aviation operations. However, the intersection of these domains remains relatively niche, resulting in a scarcity of qualified professionals. This shortage hampers the timely deployment and optimization of AI applications in aviation, leading to delays, increased costs, and suboptimal performance. Furthermore, competition for AI talent from other industries exacerbates the challenge, making it difficult for aviation companies to attract and retain top-tier AI experts. As a result, the pace of AI adoption in aviation lags behind its potential, impeding innovation and competitiveness.

This market report provides details of new recent developments, trade regulations, import-export analysis, production analysis, value chain optimization, market share, impact of domestic and localized market players, analyses opportunities in terms of emerging revenue pockets, changes in market regulations, strategic market growth analysis, market size, category market growths, application niches and dominance, product approvals, product launches, geographic expansions, technological innovations in the market. To gain more info on the market, contact data bridge market research for an analyst brief, our team will help you take an informed market decision to achieve market growth.

Impact and Current Market Scenario of Raw Material Shortage and Shipping Delays

Data Bridge Market Research offers a high-level analysis of the market and delivers information by keeping in account the impact and current market environment of raw material shortage and shipping delays. This translates into assessing strategic possibilities, creating effective action plans, and assisting businesses in making important decisions.

Apart from the standard report, we also offer in-depth analysis of the procurement level from forecasted shipping delays, distributor mapping by region, commodity analysis, production analysis, price mapping trends, sourcing, category performance analysis, supply chain risk management solutions, advanced benchmarking, and other services for procurement and strategic support.

Expected Impact of Economic Slowdown on the Pricing and Availability of Products

When economic activity slows, industries begin to suffer. The forecasted effects of the economic downturn on the pricing and accessibility of the products are taken into account in the market insight reports and intelligence services provided by DBMR. With this, our clients can typically keep one step ahead of their competitors, project their sales and revenue, and estimate their profit and loss expenditures.

Recent Developments

  • In October 2022, Searidge Technologies created an AI powered software using NVIDIA GPUs. Its digital tower and apron solutions, use vision AI to manage traffic control for the airports and alert users of safety concern in real time. This innovative technology not only improves airport operations but also boosts market growth by increasing the attractiveness of airports as safer, more efficient hubs, consequently driving demand for Searidge's cutting-edge solutions
  • In April 2022, Banglore International Airport Limited (BIAL) collaborated with Amazon to establish a Joint Innovation Center (JIC) and accelerated innovation in aviation. This collaboration fosters the development of new technologies and solutions tailored to the aviation industry's needs, enhancing operational efficiency, passenger experience, and safety standards. As a result, it stimulates market growth by driving innovation, attracting investment, and positioning BIAL as a leader in aviation advancement

Artificial Intelligence in Aviation Market Scope

The artificial intelligence in aviation market is segmented into three notable segments which are based on offering, technology, and application. The growth amongst these segments will help you analyze meagre growth segments in the industries and provide the users with a valuable market overview and market insights to help them make strategic decisions for identifying core market applications.

Offering

  • Services
  • Hardware
  • Software

Technology

  • Computer Vision
  • Machine Learning
  • Context Awareness Computing
  • Natural Language Processing

Application

  • Dynamic Pricing
  • Virtual Assistants
  • Flight Operations
  • Smart Maintenance
  • Manufacturing
  • Surveillance
  • Training
  • Other Applications

Artificial Intelligence in Aviation Market Regional Analysis/Insights

The market is analyzed and market size insights and trends are provided by offering, technology, and application as referenced above.

The countries covered in the market report are U.S., Canada, Mexic, Germany, Sweden, Poland, Denmark, Italy, U.K., France, Spain, Netherlands, Belgium, Switzerland, Turkey, Russia, Rest of Europe in Europe, Japan, China, India, South Korea, New Zealand, Vietnam, Australia, Singapore, Malaysia, Thailand, Indonesia, Philippines, Rest of Asia-Pacific, Brazil, Argentina, Rest of South America as a part of South America, U.A.E, Saudi Arabia, Oman, Qatar, Kuwait, South Africa, and Rest of Middle East and Africa.

North America dominates the artificial intelligence in aviation market and will continue to flourish its trend of dominance due to the swift industrialization and presence of major key players in this region.

Asia-Pacific is expected to be the fastest-growing region in the artificial intelligence in aviation market  due to the growing demand for AI technologies in the aviation sector. A significant presence in the top market player in the region which provides all the services and products in the market to the vast market size

The country section of the report also provides individual market impacting factors and changes in regulation in the market domestically that impacts the current and future trends of the market. Data points such as down-stream and upstream value chain analysis, technical trends and porter's five forces analysis, case studies are some of the pointers used to forecast the market scenario for individual countries. Also, the presence and availability of global brands and their challenges faced due to large or scarce competition from local and domestic brands, impact of domestic tariffs and trade routes are considered while providing forecast analysis of the country data.

Competitive Landscape Artificial Intelligence in Aviation Market Share Analysis

The market competitive landscape provides details by competitor. Details included are company overview, company financials, revenue generated, market potential, investment in research and development, new market initiatives, global presence, production sites and facilities, production capacities, company strengths and weaknesses, product launch, product width and breadth, application dominance. The above data points provided are only related to the companies' focus related to market.

Some of the major players operating in the market are:

  • IBM (U.S.)
  • Microsoft (U.S.)
  • Amazon Web Services, Inc. (U.S.)
  • Airbus S.A.S. (U.S.)
  • Xilinx (U.S.)
  • NVIDIA Corporation (U.S.)
  • Intel Corporation (U.S.)
  • General Electric (U.S.)
  • Micron Technology, Inc., (U.S.)
  • Lockheed Martin Corporation (U.S.)
  • SAMSUNG (South Korea)
  • Thales(France)
  • MINDTITAN  (Estonia)
  • Mitsubishi Electric Corporation (Japan)


SKU-

Get online access to the report on the World's First Market Intelligence Cloud

  • Interactive Data Analysis Dashboard
  • Company Analysis Dashboard for high growth potential opportunities
  • Research Analyst Access for customization & queries
  • Competitor Analysis with Interactive dashboard
  • Latest News, Updates & Trend analysis
  • Harness the Power of Benchmark Analysis for Comprehensive Competitor Tracking
Request for Demo

Research Methodology

Data collection and base year analysis are done using data collection modules with large sample sizes. The stage includes obtaining market information or related data through various sources and strategies. It includes examining and planning all the data acquired from the past in advance. It likewise envelops the examination of information inconsistencies seen across different information sources. The market data is analysed and estimated using market statistical and coherent models. Also, market share analysis and key trend analysis are the major success factors in the market report. To know more, please request an analyst call or drop down your inquiry.

The key research methodology used by DBMR research team is data triangulation which involves data mining, analysis of the impact of data variables on the market and primary (industry expert) validation. Data models include Vendor Positioning Grid, Market Time Line Analysis, Market Overview and Guide, Company Positioning Grid, Patent Analysis, Pricing Analysis, Company Market Share Analysis, Standards of Measurement, Global versus Regional and Vendor Share Analysis. To know more about the research methodology, drop in an inquiry to speak to our industry experts.

Customization Available

Data Bridge Market Research is a leader in advanced formative research. We take pride in servicing our existing and new customers with data and analysis that match and suits their goal. The report can be customized to include price trend analysis of target brands understanding the market for additional countries (ask for the list of countries), clinical trial results data, literature review, refurbished market and product base analysis. Market analysis of target competitors can be analyzed from technology-based analysis to market portfolio strategies. We can add as many competitors that you require data about in the format and data style you are looking for. Our team of analysts can also provide you data in crude raw excel files pivot tables (Fact book) or can assist you in creating presentations from the data sets available in the report.

Frequently Asked Questions

Enhanced Safety Measures Through AI Integration & Streamlined Air Traffic Management Systems are the growth drivers of the artificial intelligence in aviation market.
Offering, technology, and application are the factors on which the artificial intelligence in aviation market research is based.
Major companies in the artificial intelligence in aviation market are IBM (U.S.), Microsoft (U.S.), Amazon Web Services, Inc. (U.S.), Airbus S.A.S. (U.S.), Xilinx (U.S.), NVIDIA Corporation (U.S.), Intel Corporation (U.S.), General Electric (U.S.), Micron Technology, Inc., (U.S.), , Lockheed Martin Corporation (U.S.), SAMSUNG (Sout Korea), Thales(France), MINDTITAN (Estonia), and Mitsubishi Electric Corporation (Japan) among others.
The artificial intelligence in aviation market size will be worth USD 90.38 billion by 2031.
The growth rate of the artificial intelligence in aviation market is 46.2%.