Advertisement
Image

Global Predictive Maintenance Market – Industry Trends and Forecast to 2029

  • ICT
  • Upcoming Report
  • Jun 2022
  • Global
  • 350 Pages
  • No of Tables: 220
  • No of Figures: 60
  • ICT
  • Upcoming Report
  • Jun 2022
  • Global
  • 350 Pages
  • No of Tables: 220
  • No of Figures: 60

Global Predictive Maintenance Market, By Components (Solution, Services), Deployment Mode (Cloud, On-Premise), Organisation Size (Large Enterprises, Small and Medium-Sized Enterprises), Vertical (Manufacturing, Energy and Utilities, Transportation, Government, Healthcare, Aerospace and Defense, Others), Stakeholder (MRO, OEM/ODM, Technology Integrators) – Industry Trends and Forecast to 2029

Predictive Maintenance Market

Market Analysis and Size

The increased use of new and emerging technologies to gain valuable insight into decision-making has contributed to the industry growth. Various vertical end-users are increasingly in need of cost reduction and downtime, which has stimulated the market growth.

Data Bridge Market Research analyses that the predictive maintenance market value, which was USD 3.84 billion in 2021, is expected to reach the value of USD 36.01 billion by 2029, at a CAGR of 32.30% during the forecast period 2022-2029. The predictive maintenance market report also covers pricing analysis, patent analysis, and technological advancements in depth.   

Market Definition

Predictive maintenance software system is employed to watch the performance and condition of any instrumentation or machine whereas operational them. The software system observes the instrumentation victimisation advanced techniques that permits the upkeep of the machinery to be regular before any failure happens. prognosticative maintenance software system has found its application in varied fields like finding three-phase power imbalances from harmonic distortion, distinctive motor electrical phenomenon spikes, heating from dangerous bearings.

Report Scope and Market Segmentation

Report Metric

Details

Forecast Period

2022 to 2029

Base Year

2021

Historic Years

2020 (Customizable to 2019 - 2014)

Quantitative Units

Revenue in USD Billion, Volumes in Units, Pricing in USD

Segments Covered

Components (Solution, Services), Deployment Mode (Cloud, On-Premise), Organisation Size (Large Enterprises, Small & Medium-Sized Enterprises), Vertical (Manufacturing, Energy and Utilities, Transportation, Government, Healthcare, Aerospace & Defense, Others) Stakeholder (MRO,OEM/ODM,Technology Integrators)

Countries Covered

U.S., Canada and Mexico in North America, Germany, France, U.K., Netherlands, Switzerland, Belgium, Russia, Italy, Spain, Turkey, Rest of Europe in Europe, China, Japan, India, South Korea, Singapore, Malaysia, Australia, Thailand, Indonesia, Philippines, Rest of Asia-Pacific (APAC) in the Asia-Pacific (APAC), Saudi Arabia, U.A.E, South Africa, Egypt, Israel, Rest of Middle East and Africa (MEA) as a part of Middle East and Africa (MEA), Brazil, Argentina and Rest of South America as part of South America.

Market Players Covered


Microsoft(US),IBM(US),SAP(Germany),SAS Institute Inc. (US),Software AG (Germany) ,TIBCO Software Inc.(US),Hewlett Packard Enterprise Development LP (US),Altair Engineering Inc. (US),Splunk Inc. (US),Oracle (US),Google (US),Amazon Web Services, Inc. (US),General Electric (US),Schneider Electric (France),Hitachi, Ltd. (Japan),PTC (US),RapidMiner, Inc. (US),Operational Excellence (OPEX) Group Ltd, (UK),Dingo (Australia),Factory5 (Russia)

Market Opportunities

  • Growth in penetration rate of high speed internet
  • Rising adoption of advanced technologies by small scale industries 
  • Rising research and development opportunities

Global Predictive Maintenance Market Dynamics

This section deals with understanding the market drivers, advantages, opportunities, restraints and challenges. All of this is discussed in detail as below:

Drivers:

  • Increasing use of emerging technologies to gain valuable insights

The continuous developments in big data, machine-to- machine (M2M) communication, and artificial intelligence have created new possibilities for the disquisition of information deduced from artificial means. IoT bias induce a huge quantum of data from various sources, similar as detectors, cameras, and other connected bias. The data, still, doesn't give any value by itself unless anybody converts it into practicable, contextual information. Big data and data visualization ways enable druggies to gain new perceptivity through batch processing and offline analysis. Real- time data analysis and decision- timber are frequently done manually; but to make it scalable, it's preferred to be done automatically. The main part of AI technology is to probe huge volumes of data produced by various factors of the IoT ecosystem and transfigure the data into meaningful perceptivity. Enterprises are integrating AI into their predefined logical models to automate the data interpretation process and gain real- time perceptivity from the data generated from these IoT bias. AI provides enterprises with fabrics and tools to dissect real- time data and decide multiple use cases for IoT.

  • Increased number of industries globally to induce greater demand and supply in emerging nations  

Growing number of small and medium scale enterprises all around the globe is one of the major factors fostering the growth of the market. In other words, increased number of banking, financial services, and insurance (BFSI), government and public sector, healthcare and life sciences, manufacturing, retail and e-commerce, telecommunication, and IT industries, is directly influencing the growth rate of the market.

Opportunities:

  • Real-time condition monitoring to assist in taking prompt actions

Advanced asset operation is decreasingly demanded across nearly every perpendicular. Result providers equipped with AI and ML can collect and turn the vast quantum of client- related data into meaningful perceptivity, as IoT generates a huge quantum of data from connected bias. AI can also be integrated with the IoT bias to optimize various aspects of service delivery, similar as prophetic conservation and quality assessment, without the need for any mortal intervention. AI- grounded IoT results are formerly being espoused in various diligence, and this would only grow as the technology matures. The nonstop developments in big data, M2M communication, enable condition monitoring in real- time. The real- time inputs from detectors, selectors, and other control parameters would not only prognosticate embryonic asset failures but also help companies cover in real- time and take prompt conduct.

Restrictions/ challenges:

  • Lack of skilled workforce

Trained workers are needed to handle the rearmost software systems to emplace AI- grounded IoT technologies and skillsets. Hence, being workers are needed to be trained on how to operate new and upgraded systems. Also, diligence are dynamic toward espousing new technologies; still, they're facing a deficit of largely professed pool and complete workers. As utmost of the global merchandisers are organizing prophetic conservation systems, the demand for a largely professed pool is adding. Companies need to acquire moxie in areas, similar as cybersecurity, networking, and operations. Also, they seek to use IoT data for prognosticating issues, precluding failures, optimizing operations, developing new products, furnishing advanced analytics faculty, which includes AI and ML. These technologies would play a critical part in the overall reduction of functional costs. Also, with enterprises integrating AI in IoT, there would be a growing need for functional intelligence- acquainted data critic brigades to handle huge quantities of data generated from IoT bias.

  • Frequent maintenance and upgradation requirement to keep the systems updated

Enterprises are espousing AI- grounded IoT results for prophetic conservation and enhanced client experience. The merchandisers in the request must develop prophetic conservation systems considering two important factors, videlicet conservation and updates. An AI- grounded IoT system needs to be streamlined and maintained as per the changing business conditions to apply technological upgrades. The software also needs to be upgraded, as new factors are added. The new system must be integrated with the being one, as well as the fresh one. With an increase in the number of systems, the conservation cost also increases. Maintaining and upgrading AI- grounded IoT systems is going to be a grueling task for companies that offer results without any interruption.

This  predictive maintenance market report provides details of new recent developments, trade regulations, import-export analysis, production analysis, value chain optimization, market share, impact of domestic and localized market players, analyses opportunities in terms of emerging revenue pockets, changes in market regulations, strategic market growth analysis, market size, category market growths, application niches and dominance, product approvals, product launches, geographic expansions, technological innovations in the market. To gain more info on the predictive maintenance market contact Data Bridge Market Research for an Analyst Brief, our team will help you take an informed market decision to achieve market growth.

COVID-19 Impact on Predictive Maintenance Market

COVID – 19 has encyclopaedically changed the dynamics of business operations. Though the COVID – 19 outbreak has thrown light on sins in business models across verticals, it has offered several openings to digitalize and expand their business across regions as the relinquishment and integration of technologies similar as AI, analytics, IoT, and blockchain has increased in the lockdown period. The retail and manufacturing sectors faced a significant dip in business performance during the first and alternate diggings of 2020. Still, with the vacuity of vaccines and considerable control achieved over the epidemic, these sectors are anticipated to witness rising investments throughout the cast period as prophetic conservation results grow in elevation across different business functions.

Recent Developments

  • In July 2021, Schneider Electric launched EcoStruxure ™ TriconexTM Safety View, the assiduity’s first binary safety-and cybersecurity- certified bypass and alarm operation software operation that allows drivers to see both the bypass status that impacts the position of threat reduction in place, as well as the critical admonitions needed to operate the factory safely when pitfalls are high.
  • In May 2021, SAS Institute launched its SAS Viya platform to support the foundation for data and logical success by incorporating new data operation results into its important, pall native SASViya platform.

Global Predictive Maintenance Market Scope

The predictive maintenance market is segmented on the basis of  component, deployment mode, organization size, vertical, stakeholder. The growth amongst these segments will help you analyze meagre growth segments in the industries and provide the users with a valuable market overview and market insights to help them make strategic decisions for identifying core market applications.

Component:

  • Service

    • Managed Services
    • Professional Services

      • System Integration
      • Support and Maintenance
      • Consulting

System Integration

  • Support and Maintenance
  • Consulting

 Deployment Mode

  • On-premises
  • Cloud

    • Public Cloud
    • Private Cloud
    • Hybrid Cloud

 Organization Size

  • Large Enterprises
  • Small and Medium-sized Enterprises (SMEs)

 Vertical

  • Government and Defense
  • Manufacturing
  • Energy and Utilities
  • Transportation and Logistics
  • Healthcare and Life Sciences

Stakeholder

  • MRO
  • OEM/ODM
  • Technology Integrators

Predictive Maintenance Market Regional Analysis/Insights

The  predictive maintenance market is analysed and market size insights and trends are provided by country, component, deployment mode, organization size, vertical, stakeholder as referenced above.

The countries covered in the  predictive maintenance market report are U.S., Canada and Mexico in North America, Germany, France, U.K., Netherlands, Switzerland, Belgium, Russia, Italy, Spain, Turkey, Rest of Europe in Europe, China, Japan, India, South Korea, Singapore, Malaysia, Australia, Thailand, Indonesia, Philippines, Rest of Asia-Pacific (APAC) in the Asia-Pacific (APAC), Saudi Arabia, U.A.E, South Africa, Egypt, Israel, Rest of Middle East and Africa (MEA) as a part of Middle East and Africa (MEA), Brazil, Argentina and Rest of South America as part of South America.

North America is predicted to own the most important market share within the prognostic maintenance market. Key factors affirmative the expansion of the prognostic maintenance market in North America embrace the increasing technological advancements within the region. The growing range of prognostic maintenance players across regions is predicted to more drive market growth. However, Asia Pacific will show a steady rise in the adoption of predictive maintenance due to the emerging economies, technological advancement and the need to adopt latest technological innovations for achieving optimum output through proper maintenance of assets.

The country section of the report also provides individual market impacting factors and changes in market regulation that impact the current and future trends of the market. Data points like down-stream and upstream value chain analysis, technical trends and porter's five forces analysis, case studies are some of the pointers used to forecast the market scenario for individual countries. Also, the presence and availability of global brands and their challenges faced due to large or scarce competition from local and domestic brands, impact of domestic tariffs and trade routes are considered while providing forecast analysis of the country data.   

Competitive Landscape and Predictive Maintenance Market Share Analysis

The  predictive maintenance market competitive landscape provides details by competitor. Details included are company overview, company financials, revenue generated, market potential, investment in research and development, new market initiatives, global presence, production sites and facilities, production capacities, company strengths and weaknesses, product launch, product width and breadth, application dominance. The above data points provided are only related to the companies' focus related to  predictive maintenance market.

Some of the major players operating in the  predictive maintenance market are:

  • Microsoft(US)
  • IBM(US)
  • SAP(Germany)
  • SAS Institute Inc. (US)
  • Software AG (Germany)
  • TIBCO Software Inc.(US)
  • Hewlett Packard Enterprise Development LP (US)
  • Altair Engineering Inc. (US)
  • Splunk Inc. (US)
  • Oracle (US)
  • Google (US)
  • Amazon Web Services, Inc. (US)
  • General Electric (US)
  • Schneider Electric (France)
  • Hitachi, Ltd. (Japan)
  • PTC (US)
  • RapidMiner, Inc. (US)
  • Operational Excellence (OPEX) Group Ltd, (UK)
  • Dingo (Australia)
  • Factory5 (Russia)


SKU-
Why Choose Us
Flowers


Frequently Asked Questions

The market value for the Predictive Maintenance Market is expected USD 36.01 billion by 2029.
The Predictive Maintenance Market is to grow at a CAGR of 32.30% during the forecast by 2029.
The major players operating in the Predictive Maintenance Market are Microsoft(US),IBM(US),SAP(Germany),SAS Institute Inc. (US),Software AG (Germany) ,TIBCO Software Inc.(US),Hewlett Packard Enterprise Development LP (US),Altair Engineering Inc. (US),Splunk Inc. (US),Oracle (US),Google (US),Amazon Web Services, Inc. (US),General Electric (US),Schneider Electric (France),Hitachi, Ltd. (Japan),PTC (US),RapidMiner, Inc. (US),Operational Excellence (OPEX) Group Ltd, (UK),Dingo (Australia),Factory5 (Russia).
The major countries covered in the Predictive Maintenance Market are U.S., Canada and Mexico in North America, Germany, France, U.K., Netherlands, Switzerland, Belgium, Russia, Italy, Spain, Turkey, Rest of Europe in Europe, China, Japan, India, South Korea, Singapore, Malaysia, Australia, Thailand, Indonesia, Philippines, Rest of Asia-Pacific (APAC) in the Asia-Pacific (APAC), Saudi Arabia, U.A.E, South Africa, Egypt, Israel, Rest of Middle East and Africa (MEA) as a part of Middle East and Africa (MEA), Brazil, Argentina and Rest of South America as part of South America.