“Enhanced Convenience Through AI and Advanced Diagnostic Integration in Scleritis Management”
- A significant and accelerating trend in the global scleritis market is the integration of artificial intelligence (AI) and advanced imaging technologies in ophthalmology, which is enhancing the precision and efficiency of diagnosing and managing scleritis
- For instance, AI-assisted fundus imaging and anterior segment OCT (Optical Coherence Tomography) are being employed to distinguish scleritis from episcleritis more effectively, reducing diagnostic delays and improving patient outcomes. These technologies can analyze subtle inflammatory changes that may be missed in conventional exams
- AI is also being used to predict disease progression and treatment response, allowing for more personalized treatment plans. Machine learning models trained on patient data can help ophthalmologists anticipate flare-ups or complications and adjust immunosuppressive therapy proactively
- Teleophthalmology platforms equipped with AI triage tools are expanding access to scleritis diagnosis and care, especially in remote or underserved regions. These platforms enable early intervention by facilitating real-time consultations and automated image analysis
- The growing adoption of biologic therapies such as TNF inhibitors and IL-6 blockers has further pushed for innovation in treatment monitoring. AI tools are being integrated with electronic health records (EHR) to track patient responses and side effects, improving adherence and long-term disease management
- This shift toward more intelligent, connected, and evidence-based scleritis care is reshaping expectations in ophthalmic practice. As healthcare systems adopt smart diagnostic platforms and predictive analytics, companies developing targeted therapies and AI-powered devices are well-positioned for growth in the scleritis market



