Global Ai Based Medical Billing Fraud Detection Market
Размер рынка в млрд долларов США
CAGR :
%
USD
1.19 Billion
USD
5.53 Billion
2024
2032
| 2025 –2032 | |
| USD 1.19 Billion | |
| USD 5.53 Billion | |
|
|
|
|
Сегментация мирового рынка обнаружения мошенничества в медицинских счетах на основе искусственного интеллекта по компонентам (программное обеспечение и услуги), режиму развертывания (локально и в облаке), типу аналитики (описательная аналитика, предиктивная аналитика и предписывающая аналитика), применению (проверка страховых требований, целостность платежей и управление идентификацией), конечным пользователям (частные страховщики, государственные/правительственные учреждения и сторонние поставщики услуг) — тенденции отрасли и прогноз до 2032 года
Размер рынка обнаружения мошенничества в медицинских счетах на основе ИИ
- Объем мирового рынка обнаружения мошенничества при выставлении медицинских счетов на основе искусственного интеллекта оценивался в 1,19 млрд долларов США в 2024 году и, как ожидается , достигнет 5,53 млрд долларов США к 2032 году при среднегодовом темпе роста 21,20% в прогнозируемый период.
- Этот рост обусловлен такими факторами, как рост случаев мошенничества в сфере здравоохранения, увеличение расходов на здравоохранение и растущее внедрение технологий искусственного интеллекта и аналитики для повышения точности выставления счетов и сокращения финансовых потерь.
Анализ рынка обнаружения мошенничества в медицинских счетах на основе искусственного интеллекта
- Системы обнаружения мошенничества при выставлении счетов за медицинские услуги на основе искусственного интеллекта используют машинное обучение и аналитику данных для выявления аномалий и предотвращения мошеннических заявлений при выставлении счетов за медицинские услуги, обеспечивая соблюдение нормативных требований и финансовую целостность.
- Рост рынка в значительной степени обусловлен увеличением случаев мошенничества в сфере здравоохранения, ростом расходов на здравоохранение и растущей потребностью в автоматизации и точности процессов выставления медицинских счетов.
- Ожидается, что Северная Америка будет доминировать на рынке обнаружения мошенничества с медицинскими счетами на основе ИИ с долей рынка 45,5% благодаря развитой ИТ-инфраструктуре здравоохранения, широкому внедрению технологий ИИ и сильному присутствию ключевых игроков рынка.
- Ожидается, что Азиатско-Тихоокеанский регион станет самым быстрорастущим регионом на рынке обнаружения мошенничества в медицинских счетах на основе ИИ с долей рынка в 16,5% в течение прогнозируемого периода из-за быстрого расширения инфраструктуры здравоохранения, повышения уровня цифровизации и повышения осведомленности о мошенничестве.
- Ожидается, что сегмент программного обеспечения будет доминировать на рынке с долей рынка 60,5% благодаря своей способности автоматизировать сложные процессы выставления счетов, повышать точность обнаружения и сокращать количество ручных ошибок.
Область применения отчета и сегментация рынка обнаружения мошенничества в медицинских счетах на основе искусственного интеллекта
|
Атрибуты |
Ключевые рыночные данные по обнаружению мошенничества в медицинских счетах на основе искусственного интеллекта |
|
Охваченные сегменты |
|
|
Страны, охваченные |
Северная Америка
Европа
Азиатско-Тихоокеанский регион
Ближний Восток и Африка
Южная Америка
|
|
Ключевые игроки рынка |
|
|
Возможности рынка |
|
|
Информационные наборы данных с добавленной стоимостью |
Помимо информации о рыночных сценариях, таких как рыночная стоимость, темпы роста, сегментация, географический охват и основные игроки, рыночные отчеты, подготовленные Data Bridge Market Research, также включают анализ импорта и экспорта, обзор производственных мощностей, анализ потребления продукции, анализ ценовых тенденций, сценарий изменения климата, анализ цепочки поставок, анализ цепочки создания стоимости, обзор сырья/расходных материалов, критерии выбора поставщиков, анализ PESTLE, анализ Портера и нормативную базу. |
Тенденции рынка обнаружения мошенничества в медицинских счетах на основе искусственного интеллекта
«Достижения в области алгоритмов искусственного интеллекта и предиктивной аналитики для предотвращения мошенничества»
- Одной из важных тенденций в развитии обнаружения мошенничества при оплате медицинских счетов на основе искусственного интеллекта является растущая интеграция передовых алгоритмов машинного обучения и предиктивной аналитики.
- Эти инновации повышают эффективность обнаружения мошенничества, позволяя системам автоматически анализировать огромные объемы платежных данных, выявлять закономерности и прогнозировать мошеннические действия до их совершения.
- Например, модели ИИ теперь способны отмечать несоответствия, завышенные счета или подозрительные закономерности в режиме реального времени, помогая страховщикам и поставщикам медицинских услуг смягчать финансовые потери. Это особенно полезно для обнаружения сложных мошеннических схем, таких как фантомное выставление счетов и разделение
- Эти достижения трансформируют процессы обнаружения мошенничества, повышают финансовую точность и стимулируют спрос на решения для обнаружения мошенничества нового поколения с передовыми возможностями искусственного интеллекта.
Динамика рынка обнаружения мошенничества в медицинских счетах на основе искусственного интеллекта
Водитель
«Рост случаев мошенничества в сфере здравоохранения и ошибок в выставлении счетов»
- Растущее число случаев мошенничества в сфере здравоохранения, ошибок в выставлении счетов и мошеннических заявлений существенно повышает спрос на системы обнаружения мошенничества в медицинских счетах на основе искусственного интеллекта.
- По мере того, как системы здравоохранения становятся все более цифровыми, мошеннические действия, такие как выставление фиктивных счетов, перекодирование и разделение, становятся все более изощренными, что приводит к более высоким финансовым потерям.
- Спрос на решения на основе искусственного интеллекта растет, поскольку эти системы могут эффективно анализировать большие объемы платежных данных для выявления аномалий и предотвращения мошенничества в режиме реального времени, обеспечивая соответствие требованиям и сокращая ручное вмешательство.
Например,
- Согласно отчету Национальной ассоциации по борьбе с мошенничеством в здравоохранении (NHCAA), мошенничество в здравоохранении обходится только США примерно в 68 миллиардов долларов США в год. Растущая потребность в эффективных решениях по предотвращению мошенничества и снижению рисков стимулирует рынок технологий обнаружения мошенничества на основе ИИ
- В результате рост числа случаев мошенничества и ошибок при выставлении счетов стимулирует внедрение решений на основе искусственного интеллекта, которые повышают точность и эффективность обнаружения мошеннических заявлений при выставлении счетов за медицинские услуги.
Возможность
«Использование ИИ для улучшенного обнаружения мошенничества и автоматизации»
- Системы обнаружения мошенничества на базе искусственного интеллекта могут значительно повысить точность аудита счетов, автоматизировать обнаружение мошеннических действий и повысить общую эффективность работы, позволяя поставщикам медицинских услуг и страховщикам принимать более обоснованные решения.
- Алгоритмы ИИ могут анализировать большие объемы данных о выставленных счетах в режиме реального времени, отмечая подозрительные заявки и выявляя закономерности мошеннического поведения, такие как дублирование заявок, разделение или фантомное выставление счетов.
- Кроме того, системы на базе искусственного интеллекта могут помочь в предиктивной аналитике, помогая организациям заблаговременно выявлять потенциальные риски мошенничества до их возникновения, сокращая финансовые потери и улучшая соблюдение нормативных требований.
Например,
- Согласно отчету Healthcare Insurance News, в 2025 году алгоритмы ИИ будут использоваться для автоматизации процессов обнаружения мошенничества, экономя страховщикам миллионы долларов ежегодно за счет выявления мошеннических схем, таких как выставление завышенных счетов и перекодирование. Способность ИИ быстро анализировать большие наборы данных позволяет более эффективно предотвращать мошенничество, сокращая время реагирования и обеспечивая своевременное вмешательство
- Интеграция ИИ в системы обнаружения мошенничества при выставлении медицинских счетов может привести к сокращению административных расходов, ускорению обработки заявок и повышению точности выявления мошеннических заявок, что в конечном итоге повысит финансовую целостность организаций здравоохранения.
Сдержанность/Вызов
«Высокие затраты на внедрение и обслуживание»
- Высокая стоимость внедрения и обслуживания систем обнаружения мошенничества на основе искусственного интеллекта представляет собой существенную проблему, особенно для небольших организаций здравоохранения или страховых компаний с ограниченным бюджетом.
- Эти решения на базе искусственного интеллекта требуют значительных инвестиций в программное обеспечение, аппаратную инфраструктуру и постоянное обслуживание, которые могут составлять от тысяч до миллионов долларов в зависимости от масштаба внедрения.
- Этот финансовый барьер может удерживать небольших поставщиков медицинских услуг и страховщиков от внедрения решений на основе искусственного интеллекта, заставляя их полагаться на традиционные методы обнаружения мошенничества , которые могут быть менее эффективными и более подверженными ошибкам.
Например,
- Согласно отчету Forrester Research, в декабре 2024 года первоначальные затраты на развертывание систем обнаружения мошенничества на основе ИИ могут стать существенным препятствием для небольших организаций. Эти затраты могут включать не только покупку программного и аппаратного обеспечения, но и обучение персонала эффективному использованию этих сложных систем.
- Следовательно, высокие первоначальные инвестиции и затраты на обслуживание могут ограничить широкое внедрение решений на базе ИИ, особенно в регионах с меньшей финансовой гибкостью, что препятствует общему росту рынка обнаружения мошенничества при выставлении медицинских счетов на основе ИИ.
Масштаб рынка обнаружения мошенничества в медицинских счетах на основе искусственного интеллекта
Рынок сегментирован по компоненту, способу развертывания, типу аналитики, применению и конечному пользователю.
|
Сегментация |
Субсегментация |
|
По компоненту |
|
|
По режиму развертывания |
|
|
По типу аналитики |
|
|
По применению |
|
|
Конечным пользователем |
|
Ожидается, что в 2025 году программное обеспечение будет доминировать на рынке с наибольшей долей в сегменте компонентов.
Ожидается, что сегмент программного обеспечения будет доминировать на рынке обнаружения мошенничества в медицинских счетах на основе ИИ с наибольшей долей в 60,5% в 2025 году благодаря своей способности автоматизировать сложные процессы выставления счетов, повышать точность обнаружения и сокращать ручные ошибки. Программное обеспечение на основе ИИ позволяет проводить анализ больших наборов данных в режиме реального времени, помогая поставщикам медицинских услуг и страховщикам более эффективно выявлять мошеннические претензии. Кроме того, интеграция машинного обучения и предиктивной аналитики еще больше усиливает возможности предотвращения мошенничества
Ожидается, что описательная аналитика составит наибольшую долю на рынке видов аналитики в прогнозируемый период.
Ожидается, что в 2025 году сегмент описательной аналитики будет доминировать на рынке с наибольшей долей рынка в 41,8% из-за его основополагающей роли в обнаружении мошенничества. Он позволяет организациям анализировать исторические данные по выставлению счетов, чтобы выявлять закономерности, тенденции и аномалии, связанные с мошенническими действиями. Это понимание имеет решающее значение для построения прогностических моделей и информирования о принятии стратегических решений, что делает его широко применяемым в секторах здравоохранения и страхования.
Региональный анализ рынка обнаружения мошенничества в медицинских счетах на основе искусственного интеллекта
«Северная Америка занимает самую большую долю на рынке обнаружения мошенничества в медицинских счетах на основе ИИ»
- Северная Америка доминирует на рынке обнаружения мошенничества с медицинскими счетами на основе ИИ с долей рынка, оцениваемой в 45,5% , что обусловлено передовой ИТ-инфраструктурой здравоохранения, высоким уровнем внедрения технологий ИИ и сильным присутствием ключевых игроков рынка.
- Доля США на рынке составляет 42,7% из-за растущей потребности в предотвращении мошенничества на фоне увеличения случаев мошенничества в здравоохранении, высоких расходов на здравоохранение и государственной поддержки внедрения ИИ в системы здравоохранения.
- Наличие устоявшихся нормативных рамок, таких как HIPAA, и растущие инвестиции в технологии здравоохранения еще больше укрепляют рынок, что приводит к повышению спроса на решения по обнаружению мошенничества на основе ИИ.
- Кроме того, растущее внедрение цифровых медицинских карт и автоматизации обработки заявлений, а также возросшая осведомленность о рисках мошенничества способствуют росту рынка во всем регионе.
«Прогнозируется, что в Азиатско-Тихоокеанском регионе будет зарегистрирован самый высокий среднегодовой темп роста на рынке обнаружения мошенничества в медицинских счетах на основе ИИ»
- Ожидается, что Азиатско-Тихоокеанский регион станет свидетелем самых высоких темпов роста рынка обнаружения мошенничества в медицинских счетах на основе ИИ с долей рынка в 16,5%, что обусловлено быстрым расширением инфраструктуры здравоохранения, ростом цифровизации и повышением осведомленности о мошенничестве.
- Такие страны, как Китай, Индия и Япония, становятся ключевыми рынками, чему способствуют большая численность населения, расширение сектора здравоохранения и рост числа случаев мошенничества в сфере здравоохранения.
- Япония, с ее развитой ИТ-инфраструктурой здравоохранения и фокусом на передовых технологиях, остается важнейшим рынком для решений по обнаружению мошенничества на основе ИИ. Страна продолжает лидировать в принятии ИИ и автоматизации в здравоохранении
- Прогнозируется, что в Индии будет зарегистрирован самый высокий среднегодовой темп роста, что обусловлено быстрым ростом сектора здравоохранения, увеличением случаев мошенничества в сфере здравоохранения и расширением инициатив в области цифрового здравоохранения, направленных на повышение точности выставления счетов и предотвращение мошенничества.
Доля рынка обнаружения мошенничества в медицинских счетах на основе искусственного интеллекта
Конкурентная среда рынка содержит сведения о конкурентах. Включены сведения о компании, ее финансах, полученном доходе, рыночном потенциале, инвестициях в исследования и разработки, новых рыночных инициативах, глобальном присутствии, производственных площадках и объектах, производственных мощностях, сильных и слабых сторонах компании, запуске продукта, широте и широте продукта, доминировании приложений. Приведенные выше данные касаются только фокуса компаний на рынке.
Основными лидерами рынка, работающими на рынке, являются:
- Optum, Inc. (США)
- Cognizant (США)
- Оракул (США)
- Deloitte (США)
- Решение MedAI (США)
- IBM (США)
- Институт SAS Inc. (США)
- MCKESSON CORPORATION (США)
- HCL Technologies Limited (Индия)
- Infosys (Индия)
- Wipro (Индия)
- Tata Consultancy Services Limited (Индия)
- Accenture (Ирландия)
- Капджемини (Франция)
- Корпорация NTT Data Group (Япония)
- Компания DXC Technology (США)
- Корпорация Epic Systems (США)
- Veradigm LLC (США)
Последние разработки на мировом рынке обнаружения мошенничества в медицинских счетах на основе искусственного интеллекта
- В мае 2025 года Optum представила Optum Integrity One — интегрированную платформу цикла доходов на основе искусственного интеллекта, разработанную для повышения точности клинической документации и кодирования. Платформа автоматизирует задачи от точки оказания помощи до окончательного кодирования, оптимизируя процесс выставления счетов и снижая административную нагрузку на поставщиков медицинских услуг.
- В апреле 2025 года Oracle представила передовые инструменты на основе искусственного интеллекта для усиления обнаружения мошенничества в медицинских претензиях. Эти инструменты используют машинное обучение и обработку естественного языка для анализа огромных объемов данных в сфере здравоохранения, выявляя закономерности, указывающие на мошеннические действия, такие как перекодирование и фантомное выставление счетов. Автоматизируя процесс обнаружения, Oracle стремится сократить количество ложных претензий и повысить точность возмещений
- В апреле 2025 года MedAI Solution подчеркнула использование ИИ для обнаружения мошенничества с медицинскими счетами в режиме реального времени. Используя обработку естественного языка, машинное обучение и автоматизацию в системах управления циклом доходов в здравоохранении, ИИ может заблаговременно выявлять и предотвращать мошеннические действия по выставлению счетов до обработки претензий, тем самым защищая финансы здравоохранения
- В апреле 2025 года компания Deloitte опубликовала аналитические данные о применении мультимодальных технологий на базе ИИ для обнаружения мошеннических действий на протяжении всего жизненного цикла страховых претензий. Эти технологии анализируют различные источники данных для выявления аномалий и потенциального мошенничества, помогая страховщикам минимизировать финансовые потери и повысить операционную эффективность.
- В апреле 2024 года Cognizant объединилась с FICO для запуска облачного решения по предотвращению мошенничества с платежами в режиме реального времени. Эта система на базе искусственного интеллекта призвана помочь банкам и поставщикам платежных услуг обнаруживать и предотвращать мошеннические транзакции в режиме реального времени, повышая безопасность в сфере цифровых платежей.
SKU-
Get online access to the report on the World's First Market Intelligence Cloud
- Интерактивная панель анализа данных
- Панель анализа компании для возможностей с высоким потенциалом роста
- Доступ аналитика-исследователя для настройки и запросов
- Анализ конкурентов с помощью интерактивной панели
- Последние новости, обновления и анализ тенденций
- Используйте возможности сравнительного анализа для комплексного отслеживания конкурентов
Методология исследования
Сбор данных и анализ базового года выполняются с использованием модулей сбора данных с большими размерами выборки. Этап включает получение рыночной информации или связанных данных из различных источников и стратегий. Он включает изучение и планирование всех данных, полученных из прошлого заранее. Он также охватывает изучение несоответствий информации, наблюдаемых в различных источниках информации. Рыночные данные анализируются и оцениваются с использованием статистических и последовательных моделей рынка. Кроме того, анализ доли рынка и анализ ключевых тенденций являются основными факторами успеха в отчете о рынке. Чтобы узнать больше, пожалуйста, запросите звонок аналитика или оставьте свой запрос.
Ключевой методологией исследования, используемой исследовательской группой DBMR, является триангуляция данных, которая включает в себя интеллектуальный анализ данных, анализ влияния переменных данных на рынок и первичную (отраслевую экспертную) проверку. Модели данных включают сетку позиционирования поставщиков, анализ временной линии рынка, обзор рынка и руководство, сетку позиционирования компании, патентный анализ, анализ цен, анализ доли рынка компании, стандарты измерения, глобальный и региональный анализ и анализ доли поставщика. Чтобы узнать больше о методологии исследования, отправьте запрос, чтобы поговорить с нашими отраслевыми экспертами.
Доступна настройка
Data Bridge Market Research является лидером в области передовых формативных исследований. Мы гордимся тем, что предоставляем нашим существующим и новым клиентам данные и анализ, которые соответствуют и подходят их целям. Отчет можно настроить, включив в него анализ ценовых тенденций целевых брендов, понимание рынка для дополнительных стран (запросите список стран), данные о результатах клинических испытаний, обзор литературы, обновленный анализ рынка и продуктовой базы. Анализ рынка целевых конкурентов можно проанализировать от анализа на основе технологий до стратегий портфеля рынка. Мы можем добавить столько конкурентов, о которых вам нужны данные в нужном вам формате и стиле данных. Наша команда аналитиков также может предоставить вам данные в сырых файлах Excel, сводных таблицах (книга фактов) или помочь вам в создании презентаций из наборов данных, доступных в отчете.

