Отчет об анализе размера, доли и тенденций мирового рынка обнаружения мошенничества в медицинских счетах на основе искусственного интеллекта — обзор отрасли и прогноз до 2032 года

Запрос на TOC Запрос на TOC Обратиться к аналитику Обратиться к аналитику Бесплатный пример отчета Бесплатный пример отчета Узнать перед покупкой Узнать перед покупкой Купить сейчас Купить сейчас

Отчет об анализе размера, доли и тенденций мирового рынка обнаружения мошенничества в медицинских счетах на основе искусственного интеллекта — обзор отрасли и прогноз до 2032 года

  • Medical Devices
  • Upcoming Report
  • May 2025
  • Global
  • 350 Pages
  • Количество таблиц: 220
  • Количество рисунков: 60

Обходите тарифные трудности с помощью гибкого консалтинга в области цепочки поставок

Анализ экосистемы цепочки поставок теперь является частью отчетов DBMR

Global Ai Based Medical Billing Fraud Detection Market

Размер рынка в млрд долларов США

CAGR :  % Diagram

Chart Image USD 1.19 Billion USD 5.53 Billion 2024 2032
Diagram Прогнозируемый период
2025 –2032
Diagram Размер рынка (базовый год)
USD 1.19 Billion
Diagram Размер рынка (прогнозируемый год)
USD 5.53 Billion
Diagram CAGR
%
Diagram Основные игроки рынка
  • Optum
  • Inc. (U.S.)
  • Cognizant (U.S.)
  • Oracle (U.S.)
  • Deloitte (U.S.)

Сегментация мирового рынка обнаружения мошенничества в медицинских счетах на основе искусственного интеллекта по компонентам (программное обеспечение и услуги), режиму развертывания (локально и в облаке), типу аналитики (описательная аналитика, предиктивная аналитика и предписывающая аналитика), применению (проверка страховых требований, целостность платежей и управление идентификацией), конечным пользователям (частные страховщики, государственные/правительственные учреждения и сторонние поставщики услуг) — тенденции отрасли и прогноз до 2032 года

Рынок обнаружения мошенничества в медицинских счетах на основе искусственного интеллекта Z

 Размер рынка обнаружения мошенничества в медицинских счетах на основе ИИ

  • Объем мирового рынка обнаружения мошенничества при выставлении медицинских счетов на основе искусственного интеллекта оценивался в 1,19 млрд долларов США в 2024 году и, как ожидается , достигнет 5,53 млрд долларов США к 2032 году при среднегодовом темпе роста 21,20% в прогнозируемый период.
  • Этот рост обусловлен такими факторами, как рост случаев мошенничества в сфере здравоохранения, увеличение расходов на здравоохранение и растущее внедрение технологий искусственного интеллекта и аналитики для повышения точности выставления счетов и сокращения финансовых потерь.

Анализ рынка обнаружения мошенничества в медицинских счетах на основе искусственного интеллекта

  • Системы обнаружения мошенничества при выставлении счетов за медицинские услуги на основе искусственного интеллекта используют машинное обучение и аналитику данных для выявления аномалий и предотвращения мошеннических заявлений при выставлении счетов за медицинские услуги, обеспечивая соблюдение нормативных требований и финансовую целостность.
  • Рост рынка в значительной степени обусловлен увеличением случаев мошенничества в сфере здравоохранения, ростом расходов на здравоохранение и растущей потребностью в автоматизации и точности процессов выставления медицинских счетов.
  • Ожидается, что Северная Америка будет доминировать на рынке обнаружения мошенничества с медицинскими счетами на основе ИИ с долей рынка 45,5% благодаря развитой ИТ-инфраструктуре здравоохранения, широкому внедрению технологий ИИ и сильному присутствию ключевых игроков рынка.
  • Ожидается, что Азиатско-Тихоокеанский регион станет самым быстрорастущим регионом на рынке обнаружения мошенничества в медицинских счетах на основе ИИ с долей рынка в 16,5% в течение прогнозируемого периода из-за быстрого расширения инфраструктуры здравоохранения, повышения уровня цифровизации и повышения осведомленности о мошенничестве.
  • Ожидается, что сегмент программного обеспечения будет доминировать на рынке с долей рынка 60,5% благодаря своей способности автоматизировать сложные процессы выставления счетов, повышать точность обнаружения и сокращать количество ручных ошибок.

Область применения отчета и сегментация рынка обнаружения мошенничества в медицинских счетах на основе искусственного интеллекта  

Атрибуты

Ключевые рыночные данные по обнаружению мошенничества в медицинских счетах на основе искусственного интеллекта

Охваченные сегменты

  • По компоненту : Программное обеспечение и услуги
  • По способу развертывания:  локально и в облаке
  • По типу аналитики : описательная аналитика, предиктивная аналитика и предписывающая аналитика
  • По применению:  проверка страховых требований, целостность платежей и управление идентификацией
  • Конечным пользователем:  плательщики частных страховых взносов, государственные/правительственные учреждения и сторонние поставщики услуг

Страны, охваченные

Северная Америка

  • НАС
  • Канада
  • Мексика

Европа

  • Германия
  • Франция
  • Великобритания
  • Нидерланды
  • Швейцария
  • Бельгия
  • Россия
  • Италия
  • Испания
  • Турция
  • Остальная Европа

Азиатско-Тихоокеанский регион

  • Китай
  • Япония
  • Индия
  • Южная Корея
  • Сингапур
  • Малайзия
  • Австралия
  • Таиланд
  • Индонезия
  • Филиппины
  • Остальная часть Азиатско-Тихоокеанского региона

Ближний Восток и Африка

  • Саудовская Аравия
  • ОАЭ
  • ЮАР
  • Египет
  • Израиль
  • Остальной Ближний Восток и Африка

Южная Америка

  • Бразилия
  • Аргентина
  • Остальная часть Южной Америки

Ключевые игроки рынка

  • Optum, Inc. (США)
  • Cognizant ( США)
  • Оракул (США)
  • Deloitte (США)
  • Решение MedAI (США)
  • IBM (США)
  • Институт SAS Inc. (США)
  • MCKESSON CORPORATION (США)
  • HCL Technologies Limited (Индия)
  • Infosys (Индия)
  • Wipro (Индия)
  • Tata Consultancy Services Limited (Индия)
  • Accenture (Ирландия)
  • Капджемини (Франция)
  • Корпорация NTT Data Group (Япония)
  • Компания DXC Technology (США)
  • Корпорация Epic Systems (США)
  • Veradigm LLC (США)

Возможности рынка

  • Использование ИИ для улучшенного обнаружения мошенничества и автоматизации
  • Растущее внедрение автоматизации на базе искусственного интеллекта среди плательщиков медицинских услуг

Информационные наборы данных с добавленной стоимостью

Помимо информации о рыночных сценариях, таких как рыночная стоимость, темпы роста, сегментация, географический охват и основные игроки, рыночные отчеты, подготовленные Data Bridge Market Research, также включают анализ импорта и экспорта, обзор производственных мощностей, анализ потребления продукции, анализ ценовых тенденций, сценарий изменения климата, анализ цепочки поставок, анализ цепочки создания стоимости, обзор сырья/расходных материалов, критерии выбора поставщиков, анализ PESTLE, анализ Портера и нормативную базу.

Тенденции рынка обнаружения мошенничества в медицинских счетах на основе искусственного интеллекта

«Достижения в области алгоритмов искусственного интеллекта и предиктивной аналитики для предотвращения мошенничества»

  • Одной из важных тенденций в развитии обнаружения мошенничества при оплате медицинских счетов на основе искусственного интеллекта является растущая интеграция передовых алгоритмов машинного обучения и предиктивной аналитики.
  • Эти инновации повышают эффективность обнаружения мошенничества, позволяя системам автоматически анализировать огромные объемы платежных данных, выявлять закономерности и прогнозировать мошеннические действия до их совершения. 
    • Например, модели ИИ теперь способны отмечать несоответствия, завышенные счета или подозрительные закономерности в режиме реального времени, помогая страховщикам и поставщикам медицинских услуг смягчать финансовые потери. Это особенно полезно для обнаружения сложных мошеннических схем, таких как фантомное выставление счетов и разделение 
  • Эти достижения трансформируют процессы обнаружения мошенничества, повышают финансовую точность и стимулируют спрос на решения для обнаружения мошенничества нового поколения с передовыми возможностями искусственного интеллекта.

Динамика рынка обнаружения мошенничества в медицинских счетах на основе искусственного интеллекта

Водитель

«Рост случаев мошенничества в сфере здравоохранения и ошибок в выставлении счетов»

  • Растущее число случаев мошенничества в сфере здравоохранения, ошибок в выставлении счетов и мошеннических заявлений существенно повышает спрос на системы обнаружения мошенничества в медицинских счетах на основе искусственного интеллекта.
  • По мере того, как системы здравоохранения становятся все более цифровыми, мошеннические действия, такие как выставление фиктивных счетов, перекодирование и разделение, становятся все более изощренными, что приводит к более высоким финансовым потерям.
  • Спрос на решения на основе искусственного интеллекта растет, поскольку эти системы могут эффективно анализировать большие объемы платежных данных для выявления аномалий и предотвращения мошенничества в режиме реального времени, обеспечивая соответствие требованиям и сокращая ручное вмешательство.

Например,

  • Согласно отчету Национальной ассоциации по борьбе с мошенничеством в здравоохранении (NHCAA), мошенничество в здравоохранении обходится только США примерно в 68 миллиардов долларов США в год. Растущая потребность в эффективных решениях по предотвращению мошенничества и снижению рисков стимулирует рынок технологий обнаружения мошенничества на основе ИИ 
  • В результате рост числа случаев мошенничества и ошибок при выставлении счетов стимулирует внедрение решений на основе искусственного интеллекта, которые повышают точность и эффективность обнаружения мошеннических заявлений при выставлении счетов за медицинские услуги.

Возможность

«Использование ИИ для улучшенного обнаружения мошенничества и автоматизации»

  • Системы обнаружения мошенничества на базе искусственного интеллекта могут значительно повысить точность аудита счетов, автоматизировать обнаружение мошеннических действий и повысить общую эффективность работы, позволяя поставщикам медицинских услуг и страховщикам принимать более обоснованные решения.
  • Алгоритмы ИИ могут анализировать большие объемы данных о выставленных счетах в режиме реального времени, отмечая подозрительные заявки и выявляя закономерности мошеннического поведения, такие как дублирование заявок, разделение или фантомное выставление счетов.
  • Кроме того, системы на базе искусственного интеллекта могут помочь в предиктивной аналитике, помогая организациям заблаговременно выявлять потенциальные риски мошенничества до их возникновения, сокращая финансовые потери и улучшая соблюдение нормативных требований.

Например,

  • Согласно отчету Healthcare Insurance News, в 2025 году алгоритмы ИИ будут использоваться для автоматизации процессов обнаружения мошенничества, экономя страховщикам миллионы долларов ежегодно за счет выявления мошеннических схем, таких как выставление завышенных счетов и перекодирование. Способность ИИ быстро анализировать большие наборы данных позволяет более эффективно предотвращать мошенничество, сокращая время реагирования и обеспечивая своевременное вмешательство 
  • Интеграция ИИ в системы обнаружения мошенничества при выставлении медицинских счетов может привести к сокращению административных расходов, ускорению обработки заявок и повышению точности выявления мошеннических заявок, что в конечном итоге повысит финансовую целостность организаций здравоохранения.

Сдержанность/Вызов

«Высокие затраты на внедрение и обслуживание»

  • Высокая стоимость внедрения и обслуживания систем обнаружения мошенничества на основе искусственного интеллекта представляет собой существенную проблему, особенно для небольших организаций здравоохранения или страховых компаний с ограниченным бюджетом.
  • Эти решения на базе искусственного интеллекта требуют значительных инвестиций в программное обеспечение, аппаратную инфраструктуру и постоянное обслуживание, которые могут составлять от тысяч до миллионов долларов в зависимости от масштаба внедрения.
  • Этот финансовый барьер может удерживать небольших поставщиков медицинских услуг и страховщиков от внедрения решений на основе искусственного интеллекта, заставляя их полагаться на традиционные методы обнаружения мошенничества , которые могут быть менее эффективными и более подверженными ошибкам.

Например,

  • Согласно отчету Forrester Research, в декабре 2024 года первоначальные затраты на развертывание систем обнаружения мошенничества на основе ИИ могут стать существенным препятствием для небольших организаций. Эти затраты могут включать не только покупку программного и аппаратного обеспечения, но и обучение персонала эффективному использованию этих сложных систем. 
  • Следовательно, высокие первоначальные инвестиции и затраты на обслуживание могут ограничить широкое внедрение решений на базе ИИ, особенно в регионах с меньшей финансовой гибкостью, что препятствует общему росту рынка обнаружения мошенничества при выставлении медицинских счетов на основе ИИ.

Масштаб рынка обнаружения мошенничества в медицинских счетах на основе искусственного интеллекта

Рынок сегментирован по компоненту, способу развертывания, типу аналитики, применению и конечному пользователю.

Сегментация

Субсегментация

По компоненту

  • Программное обеспечение
  • Услуги

По режиму развертывания

      • Локально
      • Облачный

По типу аналитики

  • Описательная аналитика
  • Прогностическая аналитика
  • Предписывающая аналитика

По применению

  • Обзор страховых случаев
  • Целостность платежей
  • Управление идентификацией

Конечным пользователем

  • Частные плательщики страховых взносов
  • Государственные/правительственные учреждения
  • Сторонние поставщики услуг

Ожидается, что в 2025 году программное обеспечение будет доминировать на рынке с наибольшей долей в сегменте компонентов.

Ожидается, что сегмент программного обеспечения будет доминировать на рынке обнаружения мошенничества в медицинских счетах на основе ИИ с наибольшей долей в 60,5% в 2025 году благодаря своей способности автоматизировать сложные процессы выставления счетов, повышать точность обнаружения и сокращать ручные ошибки. Программное обеспечение на основе ИИ позволяет проводить анализ больших наборов данных в режиме реального времени, помогая поставщикам медицинских услуг и страховщикам более эффективно выявлять мошеннические претензии. Кроме того, интеграция машинного обучения и предиктивной аналитики еще больше усиливает возможности предотвращения мошенничества

Ожидается, что описательная аналитика составит наибольшую долю на рынке видов аналитики в прогнозируемый период.

Ожидается, что в 2025 году сегмент описательной аналитики будет доминировать на рынке с наибольшей долей рынка в 41,8% из-за его основополагающей роли в обнаружении мошенничества. Он позволяет организациям анализировать исторические данные по выставлению счетов, чтобы выявлять закономерности, тенденции и аномалии, связанные с мошенническими действиями. Это понимание имеет решающее значение для построения прогностических моделей и информирования о принятии стратегических решений, что делает его широко применяемым в секторах здравоохранения и страхования.

Региональный анализ рынка обнаружения мошенничества в медицинских счетах на основе искусственного интеллекта

«Северная Америка занимает самую большую долю на рынке обнаружения мошенничества в медицинских счетах на основе ИИ»

  • Северная Америка доминирует на рынке обнаружения мошенничества с медицинскими счетами на основе ИИ с долей рынка, оцениваемой в 45,5% , что обусловлено передовой ИТ-инфраструктурой здравоохранения, высоким уровнем внедрения технологий ИИ и сильным присутствием ключевых игроков рынка.
  • Доля США на рынке составляет 42,7% из-за растущей потребности в предотвращении мошенничества на фоне увеличения случаев мошенничества в здравоохранении, высоких расходов на здравоохранение и государственной поддержки внедрения ИИ в системы здравоохранения.
  • Наличие устоявшихся нормативных рамок, таких как HIPAA, и растущие инвестиции в технологии здравоохранения еще больше укрепляют рынок, что приводит к повышению спроса на решения по обнаружению мошенничества на основе ИИ.
  • Кроме того, растущее внедрение цифровых медицинских карт и автоматизации обработки заявлений, а также возросшая осведомленность о рисках мошенничества способствуют росту рынка во всем регионе.

«Прогнозируется, что в Азиатско-Тихоокеанском регионе будет зарегистрирован самый высокий среднегодовой темп роста на рынке обнаружения мошенничества в медицинских счетах на основе ИИ»

  • Ожидается, что Азиатско-Тихоокеанский регион станет свидетелем самых высоких темпов роста рынка обнаружения мошенничества в медицинских счетах на основе ИИ с долей рынка в 16,5%, что обусловлено быстрым расширением инфраструктуры здравоохранения, ростом цифровизации и повышением осведомленности о мошенничестве.
  • Такие страны, как Китай, Индия и Япония, становятся ключевыми рынками, чему способствуют большая численность населения, расширение сектора здравоохранения и рост числа случаев мошенничества в сфере здравоохранения.
  • Япония, с ее развитой ИТ-инфраструктурой здравоохранения и фокусом на передовых технологиях, остается важнейшим рынком для решений по обнаружению мошенничества на основе ИИ. Страна продолжает лидировать в принятии ИИ и автоматизации в здравоохранении
  • Прогнозируется, что в Индии будет зарегистрирован самый высокий среднегодовой темп роста, что обусловлено быстрым ростом сектора здравоохранения, увеличением случаев мошенничества в сфере здравоохранения и расширением инициатив в области цифрового здравоохранения, направленных на повышение точности выставления счетов и предотвращение мошенничества.

Доля рынка обнаружения мошенничества в медицинских счетах на основе искусственного интеллекта

Конкурентная среда рынка содержит сведения о конкурентах. Включены сведения о компании, ее финансах, полученном доходе, рыночном потенциале, инвестициях в исследования и разработки, новых рыночных инициативах, глобальном присутствии, производственных площадках и объектах, производственных мощностях, сильных и слабых сторонах компании, запуске продукта, широте и широте продукта, доминировании приложений. Приведенные выше данные касаются только фокуса компаний на рынке.

Основными лидерами рынка, работающими на рынке, являются:

  • Optum, Inc. (США)
  • Cognizant (США)
  • Оракул (США)
  • Deloitte (США)
  • Решение MedAI (США)
  • IBM (США)
  • Институт SAS Inc. (США)
  • MCKESSON CORPORATION (США)
  • HCL Technologies Limited (Индия)
  • Infosys (Индия)
  • Wipro (Индия)
  • Tata Consultancy Services Limited (Индия)
  • Accenture (Ирландия)
  • Капджемини (Франция)
  • Корпорация NTT Data Group (Япония)
  • Компания DXC Technology (США)
  • Корпорация Epic Systems (США)
  • Veradigm LLC (США)

Последние разработки на мировом рынке обнаружения мошенничества в медицинских счетах на основе искусственного интеллекта

  • В мае 2025 года Optum представила Optum Integrity One — интегрированную платформу цикла доходов на основе искусственного интеллекта, разработанную для повышения точности клинической документации и кодирования. Платформа автоматизирует задачи от точки оказания помощи до окончательного кодирования, оптимизируя процесс выставления счетов и снижая административную нагрузку на поставщиков медицинских услуг.
  • В апреле 2025 года Oracle представила передовые инструменты на основе искусственного интеллекта для усиления обнаружения мошенничества в медицинских претензиях. Эти инструменты используют машинное обучение и обработку естественного языка для анализа огромных объемов данных в сфере здравоохранения, выявляя закономерности, указывающие на мошеннические действия, такие как перекодирование и фантомное выставление счетов. Автоматизируя процесс обнаружения, Oracle стремится сократить количество ложных претензий и повысить точность возмещений
  • В апреле 2025 года MedAI Solution подчеркнула использование ИИ для обнаружения мошенничества с медицинскими счетами в режиме реального времени. Используя обработку естественного языка, машинное обучение и автоматизацию в системах управления циклом доходов в здравоохранении, ИИ может заблаговременно выявлять и предотвращать мошеннические действия по выставлению счетов до обработки претензий, тем самым защищая финансы здравоохранения
  • В апреле 2025 года компания Deloitte опубликовала аналитические данные о применении мультимодальных технологий на базе ИИ для обнаружения мошеннических действий на протяжении всего жизненного цикла страховых претензий. Эти технологии анализируют различные источники данных для выявления аномалий и потенциального мошенничества, помогая страховщикам минимизировать финансовые потери и повысить операционную эффективность.
  • В апреле 2024 года Cognizant объединилась с FICO для запуска облачного решения по предотвращению мошенничества с платежами в режиме реального времени. Эта система на базе искусственного интеллекта призвана помочь банкам и поставщикам платежных услуг обнаруживать и предотвращать мошеннические транзакции в режиме реального времени, повышая безопасность в сфере цифровых платежей. 


SKU-

Get online access to the report on the World's First Market Intelligence Cloud

  • Интерактивная панель анализа данных
  • Панель анализа компании для возможностей с высоким потенциалом роста
  • Доступ аналитика-исследователя для настройки и запросов
  • Анализ конкурентов с помощью интерактивной панели
  • Последние новости, обновления и анализ тенденций
  • Используйте возможности сравнительного анализа для комплексного отслеживания конкурентов
Запросить демонстрацию

Методология исследования

Сбор данных и анализ базового года выполняются с использованием модулей сбора данных с большими размерами выборки. Этап включает получение рыночной информации или связанных данных из различных источников и стратегий. Он включает изучение и планирование всех данных, полученных из прошлого заранее. Он также охватывает изучение несоответствий информации, наблюдаемых в различных источниках информации. Рыночные данные анализируются и оцениваются с использованием статистических и последовательных моделей рынка. Кроме того, анализ доли рынка и анализ ключевых тенденций являются основными факторами успеха в отчете о рынке. Чтобы узнать больше, пожалуйста, запросите звонок аналитика или оставьте свой запрос.

Ключевой методологией исследования, используемой исследовательской группой DBMR, является триангуляция данных, которая включает в себя интеллектуальный анализ данных, анализ влияния переменных данных на рынок и первичную (отраслевую экспертную) проверку. Модели данных включают сетку позиционирования поставщиков, анализ временной линии рынка, обзор рынка и руководство, сетку позиционирования компании, патентный анализ, анализ цен, анализ доли рынка компании, стандарты измерения, глобальный и региональный анализ и анализ доли поставщика. Чтобы узнать больше о методологии исследования, отправьте запрос, чтобы поговорить с нашими отраслевыми экспертами.

Доступна настройка

Data Bridge Market Research является лидером в области передовых формативных исследований. Мы гордимся тем, что предоставляем нашим существующим и новым клиентам данные и анализ, которые соответствуют и подходят их целям. Отчет можно настроить, включив в него анализ ценовых тенденций целевых брендов, понимание рынка для дополнительных стран (запросите список стран), данные о результатах клинических испытаний, обзор литературы, обновленный анализ рынка и продуктовой базы. Анализ рынка целевых конкурентов можно проанализировать от анализа на основе технологий до стратегий портфеля рынка. Мы можем добавить столько конкурентов, о которых вам нужны данные в нужном вам формате и стиле данных. Наша команда аналитиков также может предоставить вам данные в сырых файлах Excel, сводных таблицах (книга фактов) или помочь вам в создании презентаций из наборов данных, доступных в отчете.

Часто задаваемые вопросы

Рынок сегментирован на основе Сегментация мирового рынка обнаружения мошенничества в медицинских счетах на основе искусственного интеллекта по компонентам (программное обеспечение и услуги), режиму развертывания (локально и в облаке), типу аналитики (описательная аналитика, предиктивная аналитика и предписывающая аналитика), применению (проверка страховых требований, целостность платежей и управление идентификацией), конечным пользователям (частные страховщики, государственные/правительственные учреждения и сторонние поставщики услуг) — тенденции отрасли и прогноз до 2032 года .
Размер Отчет об анализе размера, доли и тенденций мирового рынка обнаружения мошенничества в медицинских счетах на основе искусственного интеллекта — обзор отрасли и прогноз до 2032 года в 2024 году оценивался в 1.19 USD Billion долларов США.
Ожидается, что Отчет об анализе размера, доли и тенденций мирового рынка обнаружения мошенничества в медицинских счетах на основе искусственного интеллекта — обзор отрасли и прогноз до 2032 года будет расти со среднегодовым темпом роста (CAGR) 21.2% в течение прогнозируемого периода 2025–2032.
Основные участники рынка включают Optum, Inc. (U.S.), Cognizant (U.S.), Oracle (U.S.), Deloitte (U.S.) , MedAI Solution (U.S.).
Testimonial