产品发布(博客)

2023 年 12 月 13 日

人工智能彻底改变保险欺诈检测:揭露欺诈行为,使保险公司能够快速准确地维护市场诚信

在保险市场的人工智能 (AI) 中,先进的 AI 功能极大地增强了欺诈检测能力。通过模式识别,AI 系统可以细致地分析大量历史数据,辨别出索赔或申请信息中可能存在欺诈活动的细微模式。这种主动方法有助于保险公司预先识别违规行为并降低风险。由 AI 算法支持的实时监控可以即时查看交易和索赔。这种快速审查使保险公司能够及时识别和应对潜在的欺诈活动,从而增强行业抵御欺诈索赔的能力并维护保险市场的完整性。

根据 Data Bridge 市场研究分析 全球保险市场中的人工智能(AI) 2022 年的价值为 36.4 亿美元,预计到 2030 年将达到 357.7 亿美元,2023-2030 年预测期内的复合年增长率为 33.06%。

“聊天机器人中人工智能的使用率上升推动了市场增长”

聊天机器人中人工智能 (AI) 的使用日益增多,这是保险市场发展的关键驱动因素。人工智能聊天机器人通过提供快速准确的响应、自动化流程和简化工作流程来增强客户服务。这些聊天机器人的速度和效率有助于提供更顺畅的客户体验、减少错误并确保数据准确性。利用客户数据,人工智能聊天机器人提供个性化的产品推荐,从而带来追加销售机会。此外,人工智能的整合还可以通过减少人工工作量为保险公司节省成本。

什么制约了全球 保险市场中的人工智能(AI)

“安全漏洞阻碍了市场增长”

安全漏洞和数据泄露对保险市场中人工智能的发展构成重大风险。人工智能与保险的整合涉及处理大量敏感数据,使该行业容易受到网络威胁。潜在后果包括失去客户信任、声誉受损、监管审查和投资者信心下降。安全挑战可能会导致保险行业采用人工智能的速度放缓,从而阻碍整体市场增长。

细分:保险市场的全球人工智能 (AI)

全球保险人工智能(AI)市场根据组件、技术、部署模型、企业规模、应用和行业进行细分。

  • 根据组成部分,全球保险人工智能 (AI) 市场分为硬件、软件和服务
  • 根据技术,全球保险人工智能(AI)市场细分为机器学习和 深度学习自然语言处理 (NLP)、机器视觉和机器人自动化
  • 根据部署模式,全球保险人工智能 (AI) 市场分为本地部署和云端部署。
  • 根据企业规模,全球保险人工智能市场分为大型企业和中小型企业
  • 根据应用情况,全球保险人工智能 (AI) 市场细分为索赔管理、 风险管理 合规性、聊天机器人等
  • 根据行业,全球保险人工智能 (AI) 市场细分为人寿保险、健康保险、产权保险、汽车保险等

区域洞察:北美在全球保险人工智能 (AI) 市场中占据主导地位

北美在收入和市场份额方面都占据 AI 保险市场的主导地位,这得益于其技术创新中心、保险公司早期采用 AI、传统公司和科技公司之间的合作、支持性监管环境以及大量投资。这一主导地位凸显了北美在塑造保险行业 AI 应用未来方面的关键作用。

由于政府加大对数字化的支持力度,以及对物联网和人工智能等技术的投资不断增加,预计亚太地区在预测期内(2023-2030 年)将实现增长。这些因素推动了保险业对人工智能应用的需求,提高了效率、自动化程度和个性化服务,使该地区成为推动行业人工智能发展的关键参与者。

欲了解有关考察的更多信息https://www.databridgemarketresearch.com/reports/global-artificial-intelligence-ai-in-insurance-market

全球范围内运营的知名关键参与者 保险市场中的人工智能(AI) 包括:

  • 微软 (美国)
  • 印孚瑟斯有限公司 (印度)
  • Tractable Ltd(美国)
  • Insurify, Inc.(美国)
  • Slice Insurance Technologies Inc.(美国)
  • 谷歌(美国)
  • 甲骨文 (美国)
  • 亚马逊网络服务公司(美国)
  • IBM(美国)
  • 阿瓦莫(美国)
  • Cape Analytics(美国)
  • 威普罗(印度)
  • Acko 普通保险 (印度)
  • Shift Technology(法国)
  • Quanttemplate(英国)
  • 苏黎世(瑞士)
  • Lemonade Insurance Agency, LLC(美国)

以上是报告中涉及的关键参与者,了解更多和详尽的全球 保险市场中的人工智能(AI) 公司 接触, https://www.databridgemarketresearch.com/contact

研究方法:保险市场中的全球人工智能(AI)

数据收集和基准年分析是使用具有大样本量的数据收集模块完成的。使用市场统计和连贯模型分析和估计市场数据。此外,市场份额分析和关键趋势分析是市场报告中的主要成功因素。DBMR 研究团队使用的关键研究方法是数据三角测量,其中包括数据挖掘、数据变量对市场影响的分析以及主要(行业专家)验证。除此之外,数据模型还包括供应商定位网格、市场时间线分析、市场概览和指南、公司定位网格、公司市场份额分析、测量标准、全球与区域以及供应商份额分析。如有进一步询问,请要求分析师致电。


客户证言