全球資料整理市場,按業務功能(財務、行銷和銷售、營運、人力資源和法律)、組件(工具和服務)、部署模型(本地和雲端)、組織規模(大型企業和中小型企業)、行業垂直領域(銀行、金融服務和保險、政府和公共部門、醫療保健和生命科學、零售和電子商務、旅遊和酒店、汽車和交通、能源製造和運輸
數據整理市場規模
- 2024 年資料整理市場價值為30 億美元 ,預計到 2032 年將達到 66 億美元
- 在 2025 年至 2032 年的預測期內,市場可能會以10.7% 的複合年增長率成長, 這主要得益於高度研究優化和新興產業的成長。
- 這一成長是由人工智慧自動化日益普及所推動的,它提高了資料準備效率並減少了人工工作量。
資料整理市場分析
- 資料整理在金融、醫療、零售和電信等產業中越來越受到重視,旨在簡化資料處理、增強決策能力並提高營運效率
- 人工智慧、機器學習和自動化的進步正在徹底改變資料整理,為分析、商業智慧和預測建模提供更快、更準確的資料準備
- 組織正在從手動資料清理轉向自動化資料整理解決方案,以處理日益增長的資料複雜性並提高雲端和大數據環境中的可擴展性
- 即時資料整理工具透過整合結構化和非結構化資料來源提供切實可行的見解,為企業提供更好的預測、個人化服務以及更高的資料驅動策略投資報酬率
- 由於資料整理服務的採用率不斷提高,預計北美將在預測期內主導資料整理市場,每天收集的資料也增加了對大規模資料整理的需求
報告範圍與數據整理市場細分
|
屬性 |
資料整理市場關鍵市場洞察 |
|
涵蓋的領域 |
|
|
覆蓋國家 |
北美洲
歐洲
亞太
中東和非洲
南美洲
南美洲其他地區 |
|
主要市場參與者 |
|
|
市場機會 |
|
|
加值資料資訊集 |
除了市場價值、成長率、市場細分、地理覆蓋範圍、市場參與者和市場情景等市場洞察之外,Data Bridge 市場研究團隊策劃的市場報告還包括深入的專家分析、進出口分析、定價分析、生產消費分析、PORTER 分析和 PESTLE 分析。 |
數據整理市場趨勢
“基於雲端的資料整理解決方案的採用日益廣泛”
- 基於雲端的資料整理解決方案可以動態擴展以處理大量資料集,確保跨分散式資料環境的高速處理、高效的資源分配和不間斷的工作流程。由於雲端解決方案支援即時協作、自動更新以及與人工智慧驅動的分析工具的無縫集成,從而實現更明智的決策,企業可以降低 IT 基礎設施費用,同時提高可訪問性
- 強大的加密、存取控制和合規框架確保資料完整性和保護,幫助組織滿足行業法規,同時安全地管理雲端生態系統中的結構化和非結構化資料。
- 基於雲端的資料整理可實現即時資料轉換,與大數據、物聯網和人工智慧分析無縫集成,從而提供更快的洞察並提高商業智慧能力。
例如,
- 2025 年 4 月,根據福布斯媒體有限責任公司發布的博客,將於下週在拉斯維加斯舉行的 Google Cloud Next 2025 將重點介紹人工智能驅動的數據整理、雲端運算和分析方面的進步。期待像 Gemini 驅動的資料庫和 AI 增強資料管理工具這樣的創新,展示Google跨產業整合雲端、AI 和資料解決方案的策略。這項活動也將聚焦於賦能開發者和擴大人工智慧人才,增強谷歌在雲端技術領域的競爭優勢
- 此外,利用機器學習和人工智慧,雲端平台可以自動進行資料清理、重複資料刪除和轉換,減少人工錯誤,提高準確性,並優化資料工作流程以便做出更好的決策。
資料整理市場動態
司機
“人工智慧和自動化在數據處理中的應用日益廣泛”
- 人工智慧和自動化在資料處理中的日益普及,透過提高效率和準確性,大大推動了資料整理市場的發展。傳統的資料整理方法通常很耗時,而且容易出現人為錯誤,因此人工智慧驅動的自動化可以改變遊戲規則。透過利用機器學習演算法,企業可以自動化資料清理、轉換和集成,減少人工工作量,同時提高資料品質。
- 人工智慧自動化可實現即時資料整理,使企業能夠即時提取見解並更快地做出數據驅動的決策。金融、醫療保健和零售等行業越來越依賴即時分析來檢測詐欺、進行預測建模和提供個人化的客戶體驗。自動化資料整理工具有助於不斷完善資料集,確保一致性和可靠性,同時與基於人工智慧的分析平台整合。
例如,
2025年4月,彭博社技術長肖恩‧愛德華茲(Shawn Edwards)透露,人工智慧可以簡化分析師80%的工作量,大幅提高生產力。在接受《金融新聞》採訪時,他強調了產生人工智慧如何提高研究效率,尤其是在處理非結構化資料時。這家市場數據巨頭正在開發人工智慧工具,以徹底改變初級銀行職位,有可能將某些領域的生產力提高十倍,重塑金融研究和分析。
機會
“對資料治理和合規解決方案的需求日益增長”
- 對資料治理和合規性的日益增長的需求正在推動資料整理市場的需求。根據 GDPR 和 CCPA 等法規,企業必須確保資料的準確性、安全性和可追溯性。
- 金融、醫療保健和政府等行業依靠先進的資料整理工具來標準化資料、支援審計並防止未經授權的存取。人工智慧自動化改善了數據沿襲追蹤並符合不斷變化的法規。
- 隨著公司採用雲端和混合環境,資料整理工具中的內建治理、加密和存取控制對於管理合規風險至關重要。
例如,
- 2025年2月,COMPLY公佈了2025年創新路線圖,強調人工智慧驅動的合規自動化和資料治理。其新的 Employee360 儀表板為首席合規官提供對員工風險和監管義務的即時監督。隨著監管複雜性的不斷增加,凸顯了對資料治理和合規解決方案日益增長的需求——為資料整理市場創造了一個關鍵機會,可以簡化監管資料管理,提高準確性,並自動化金融服務公司的合規流程
- 對資料治理和合規性的日益重視使得資料整理成為組織的關鍵能力。現代資料整理工具不僅簡化了資料準備,而且還透過內建的驗證和安全功能確保了監管合規性
克制/挑戰
“數據整理和自動化方面缺乏熟練的專家”
- 數據驅動決策的快速成長增加了對資料整理熟練專業人員的需求。然而,能夠處理複雜資料轉換、人工智慧驅動的自動化和法規遵循的專家卻嚴重短缺。許多組織都在努力尋找能夠有效管理、清理和建構大型非結構化資料集的合格人才。
- 資料整理需要多個領域的專業知識,包括資料工程、人工智慧和機器學習。整合這些領域的複雜性使得尋找具有合適技能的專業人員變得十分困難。
- 遵守 GDPR 和 CCPA 等不斷發展的資料隱私法規為資料整理增加了另一層複雜性。公司需要能夠確保資料治理同時維護安全標準的專業人員。缺乏具有資料整理專業知識的合規專家增加了違反法規的風險,從而導致法律和財務後果。
例如,
- 2024年8月,根據美通社報道,Multiverse的一份報告顯示,由於數據處理效率低下,數據技能差距導致企業每位員工每年損失26個工作天。該研究分析了美國和英國 18 個行業的 12,000 名員工,發現員工每週將 36% 的時間花在數據任務上,由於效率低下而浪費了 4.34 小時。研究結果強調,迫切需要提高勞動力的數據素養、自動化和預測建模技能
- 資料整理和自動化方面的熟練專家的短缺對於旨在有效管理複雜資料的組織來說是一個挑戰。這種差距推動了對使用者友善、人工智慧驅動的工具的需求,以減少人工工作量
數據整理市場範圍
根據業務功能、組件、部署模型、組織規模和產業垂直度,市場分為五個顯著的部分。
|
分割 |
細分 |
|
按業務功能 |
|
|
按組件 |
|
|
BY部署模型 |
|
|
按組織規模 |
|
|
按行業垂直 |
|
數據整理市場國家分析
“北美在全球數據整理市場佔據主導地位”
- 由於早期採用人工智慧、機器學習和自動化工具,北美引領全球資料整理市場,使企業能夠簡化資料處理和分析。
- 該地區是 IBM、微軟、谷歌和亞馬遜等全球科技領導者的所在地,它們不斷創新和擴展資料管理解決方案。創投和企業對人工智慧數據處理新創企業的投資也推動了市場成長。
- 此外,企業和人工智慧研究機構之間的合作使得開發更複雜的資料整理工具能夠滿足產業特定需求。
“亞太地區預計將實現最高成長率”
- 亞太地區正在經歷快速的數位轉型,各行各業都採用人工智慧驅動的分析和自動化。雲端基礎設施和數據解決方案投資的激增正在推動對高效數據整理工具的需求。
- 電子商務、金融科技和智慧城市的發展正在產生大量非結構化數據,從而推動對高階處理能力的需求。中國、印度和日本等國家正在優先考慮即時數據處理以獲得競爭洞察力。
- 更嚴格的資料保護法,包括中國的《PIPL》和印度的《DPDP法案》,正在推動企業採用資料處理工具,以確保合規性、準確性和簡化的監管報告。
數據整理市場佔有率
市場競爭格局提供了競爭對手的詳細資訊。詳細資訊包括公司概況、公司財務狀況、收入、市場潛力、研發投資、新市場計劃、全球影響力、生產基地和設施、生產能力、公司優勢和劣勢、產品發布、產品寬度和廣度、應用優勢。以上提供的數據點僅與公司對市場的關注有關。
市場中主要的市場領導者有:
- Trifacta(美國)
- Datawatch Systems Inc.(美國)
- Dataiku(法國)
- IBM(美國)
- SAS Institute Inc.(美國)
- 甲骨文(美國)
- 塔蘭德(法國)
- Alteryx Inc.(美國)
- TIBCO Software Inc.(美國)
- Paxata Inc.(美國)
- Informatica(美國)
- Hitachi Vantara 公司(日本)
- Teradata(美國)
- Datameer(美國)
- Cooladata(以色列)
- Ubiquiti Inc.(美國)
- Rapid Insight(美國)
- Infogix Inc.(美國)
- 扎洛尼(美國)
- Impetus Technologies Inc.(美國)
- Ideata Analytics(印度)
- Onedot AG(瑞士)
- IRI(美國)
- Brillio(美國)
- TMMData(美國)
數據整理市場的最新發展
2024 年 10 月,DataPelago 推出了通用資料處理引擎,用於加速任何硬體上的任何引擎,以應對 GenAI 和分析工作負載。在 4700 萬美元的資金支持下,該公司致力於解決日益增長的數據複雜性和非結構化數據挑戰。該引擎重新定義了數據處理效率,克服了成本和可擴展性的限制。執行長 Rajan Goyal 強調,該公司在加速運算時代透過處理各種格式的大量複雜資料集來釋放突破性智慧的能力。
2025 年 4 月,德國電信擴大了與 Google Cloud 的合作夥伴關係,使其成為其「一個資料生態系統」的支柱,以簡化資料系統、提高處理速度並確保法規遵循。此次合作支援德國電信的 AI 優先轉型,透過 MyMagenta 應用程式中的 Gemini 助理等 AI 驅動的解決方案增強營運和客戶體驗。 Google Cloud 也將為德國電信的新 AI 平台提供支持,推動創新和靈活性,從而提供更好的用戶體驗。
2025 年 2 月,荷蘭隱私監管機構 AP 宣布對中國人工智慧公司 DeepSeek 展開調查,因為擔心其資料收集行為和隱私權政策。這項調查是在義大利禁止 DeepSeek 應用程式之後展開的,愛爾蘭和法國等其他歐盟國家正在尋求有關其數據處理的資訊。這引發了資料整理市場的關鍵擔憂,因為歐盟嚴格的資料隱私法規強調了安全和合規資料處理實踐的重要性,影響了全球人工智慧和資料分析公司。
- 2025 年 2 月,COMPLY 公佈了 2025 年創新路線圖,強調人工智慧驅動的合規自動化和資料治理。其新的 Employee360 儀表板為首席合規官提供對員工風險和監管義務的即時監督。隨著監管複雜性的不斷增加,凸顯了對資料治理和合規解決方案日益增長的需求——為資料整理市場創造了一個關鍵機會,以簡化監管資料管理、提高準確性並為金融服務公司實現合規流程自動化。
- 2024 年 6 月,Cloudera 推出了三款 AI 助手,幫助客戶加快數據、分析和 AI 應用程式的開發。其中一個助手是 Cloudera Copilot for Cloudera Machine Learning,它利用預先訓練的 LLM 來協助解決資料準備和模型部署等挑戰。
SKU-
Get online access to the report on the World's First Market Intelligence Cloud
- Interactive Data Analysis Dashboard
- Company Analysis Dashboard for high growth potential opportunities
- Research Analyst Access for customization & queries
- Competitor Analysis with Interactive dashboard
- Latest News, Updates & Trend analysis
- Harness the Power of Benchmark Analysis for Comprehensive Competitor Tracking
研究方法
数据收集和基准年分析是使用具有大样本量的数据收集模块完成的。该阶段包括通过各种来源和策略获取市场信息或相关数据。它包括提前检查和规划从过去获得的所有数据。它同样包括检查不同信息源中出现的信息不一致。使用市场统计和连贯模型分析和估计市场数据。此外,市场份额分析和关键趋势分析是市场报告中的主要成功因素。要了解更多信息,请请求分析师致电或下拉您的询问。
DBMR 研究团队使用的关键研究方法是数据三角测量,其中包括数据挖掘、数据变量对市场影响的分析和主要(行业专家)验证。数据模型包括供应商定位网格、市场时间线分析、市场概览和指南、公司定位网格、专利分析、定价分析、公司市场份额分析、测量标准、全球与区域和供应商份额分析。要了解有关研究方法的更多信息,请向我们的行业专家咨询。
可定制
Data Bridge Market Research 是高级形成性研究领域的领导者。我们为向现有和新客户提供符合其目标的数据和分析而感到自豪。报告可定制,包括目标品牌的价格趋势分析、了解其他国家的市场(索取国家列表)、临床试验结果数据、文献综述、翻新市场和产品基础分析。目标竞争对手的市场分析可以从基于技术的分析到市场组合策略进行分析。我们可以按照您所需的格式和数据样式添加您需要的任意数量的竞争对手数据。我们的分析师团队还可以为您提供原始 Excel 文件数据透视表(事实手册)中的数据,或者可以帮助您根据报告中的数据集创建演示文稿。

