Globaler Markt für künstliche Intelligenz im Fintech-Bereich – Branchentrends und Prognose bis 2029

Inhaltsverzeichnis anfordernInhaltsverzeichnis anfordern Mit Analyst sprechen Mit Analyst sprechen Kostenloser Beispielbericht Kostenloser Beispielbericht Vor dem Kauf anfragen Vorher anfragen Jetzt kaufenJetzt kaufen

Globaler Markt für künstliche Intelligenz im Fintech-Bereich – Branchentrends und Prognose bis 2029

  • ICT
  • Upcoming Reports
  • Apr 2022
  • Global
  • 350 Seiten
  • Anzahl der Tabellen: 220
  • Anzahl der Abbildungen: 60
  • Author : Megha Gupta

Umgehen Sie die Zollherausforderungen mit agiler Supply-Chain-Beratung

Die Analyse des Supply-Chain-Ökosystems ist jetzt Teil der DBMR-Berichte

Global Ai In Fintech Market

Marktgröße in Milliarden USD

CAGR :  % Diagram

Chart Image USD 13.14 Billion USD 765.34 Billion 2021 2029
Diagramm Prognosezeitraum
2022 –2029
Diagramm Marktgröße (Basisjahr)
USD 13.14 Billion
Diagramm Marktgröße (Prognosejahr)
USD 765.34 Billion
Diagramm CAGR
%
Diagramm Wichtige Marktteilnehmer
  • BigMLInc.
  • Cisco SystemsInc.
  • FICO
  • Hewlett Packard Enterprise Development LP
  • RapidMinerInc.

Globaler Markt für künstliche Intelligenz im Fintech-Bereich, nach Komponente (Lösungen und Dienste), Bereitstellungsmodus (Cloud und vor Ort), Anwendung (virtueller Assistent, Geschäftsanalyse und -berichterstattung, Kundenverhaltensanalyse und andere) – Branchentrends und Prognose bis 2029.

Künstliche Intelligenz im Fintech-Markt

Globale Analyse und Größe des Marktes für künstliche Intelligenz im Fintech-Bereich

Künstliche Intelligenz im Fintech-Bereich ermöglicht die Verwaltung riesiger Datenmengen, um wertvolle Erkenntnisse zu gewinnen und ein besseres Verständnis von Kunden und deren Verhalten zu entwickeln. Immer mehr kleine und mittlere Endnutzer erkennen zunehmend die Bedeutung der Integration fortschrittlicher Technologien in Finanzdienstleistungen. RapidMiner, Inc. (USA), SAP SE (Deutschland), SAS Institute Inc. (USA), Microsoft (USA), Google, LLC (USA) und Hewlett Packard Enterprise Development LP (USA) sind einige der wichtigsten Akteure auf diesem Markt.

  • Data Bridge Market Research analysiert, dass der Markt für künstliche Intelligenz im Fintech-Bereich, der im Jahr 2021 13,14 Milliarden US-Dollar betrug, bis 2029 voraussichtlich einen Wert von 765,34 Milliarden US-Dollar erreichen wird, was einer durchschnittlichen jährlichen Wachstumsrate (CAGR) von 66,20 % im Prognosezeitraum entspricht. Aufgrund der wachsenden Zahl kleiner und mittlerer Unternehmen (KMU) ist die Cloud der größte Bereitstellungsmodus im Markt für künstliche Intelligenz im Fintech-Bereich.

Globale Definition des Marktes für künstliche Intelligenz im Fintech-Bereich

Schon der Name verdeutlicht, dass Fintech oder Finanztechnologie die Integration fortschrittlicher Technologien wie künstlicher Intelligenz in Finanzdienstleistungen bezeichnet, um vor betrügerischen Aktivitäten zu schützen. Künstliche Intelligenz in Fintech-Unternehmen erleichtert die Arbeit von Robo-Advisors bei der Bereitstellung von Finanzplanungsdienstleistungen.  

Berichtsumfang und Marktsegmentierung

Berichtsmetrik

Details

Prognosezeitraum

2022 bis 2029

Basisjahr

2021

Historische Jahre

2020 (Anpassbar auf 2019 – 2014)

Quantitative Einheiten

Umsatz in Milliarden USD, Mengen in Einheiten, Preise in USD

Abgedeckte Segmente

Komponente (Lösungen und Dienste), Entwicklungsmodus (Cloud und vor Ort), Anwendung (virtueller Assistent, Geschäftsanalyse und -berichterstattung, Kundenverhaltensanalyse und andere)

Abgedeckte Länder

USA, Kanada und Mexiko in Nordamerika, Deutschland, Frankreich, Großbritannien, Niederlande, Schweiz, Belgien, Russland, Italien, Spanien, Türkei, Restliches Europa in Europa, China, Japan, Indien, Südkorea, Singapur, Malaysia, Australien, Thailand, Indonesien, Philippinen, Restlicher Asien-Pazifik-Raum (APAC) im Asien-Pazifik-Raum (APAC), Saudi-Arabien, Vereinigte Arabische Emirate, Südafrika, Ägypten, Israel, Restlicher Naher Osten und Afrika (MEA) als Teil des Nahen Ostens und Afrikas (MEA), Brasilien, Argentinien und Restliches Südamerika als Teil von Südamerika.

Abgedeckte Marktteilnehmer

BigML, Inc. (USA), Cisco Systems, Inc. (USA), FICO (USA), Hewlett Packard Enterprise Development LP (USA), RapidMiner, Inc. (USA), SAP SE (Deutschland), SAS Institute Inc. (USA), Microsoft (USA), Google, LLC (USA), Salesforce.com Inc. (USA), IBM (USA), Intel Corporation (USA), Amazon Web Services, Inc. (USA), Inbenta Technologies (USA), IPsoft (USA), Nuance Communications (USA) und ComplyAdvantage (Großbritannien)

Marktchancen

  • Wachstum der Durchdringungsrate des Hochgeschwindigkeitsinternets
  • Steigende Zahl von Cyberkriminellen   
  • Steigende Forschungs- und Entwicklungsmöglichkeiten

Globale künstliche Intelligenz in der Fintech-Marktdynamik

In diesem Abschnitt geht es um das Verständnis der Markttreiber, Vorteile, Chancen, Einschränkungen und Herausforderungen. All dies wird im Folgenden ausführlich erläutert:

Treiber:

  • Steigende Investitionen in Forschung und Entwicklung sollen den Weg für Innovationen ebnen

Die steigende Zahl strategischer Marktkooperationen hat zu einem Anstieg der Mittel für den Ausbau und die Entwicklung fortschrittlicher und automatisierter Technologien/Maschinen gegen betrügerische Aktivitäten geführt. Darüber hinaus würden steigende Investitionen in Forschung und Entwicklung den Weg für Innovationen in der Informationstechnologie ebnen. Die zunehmende Integration von künstlicher Intelligenz und maschinellem Lernen wird sich als Segen für den Markt erweisen.      

  • Weltweit steigende Zahl neuer Industrien führt zu mehr Nachfrage und Angebot in Schwellenländern  

Die weltweit wachsende Zahl kleiner und mittlerer Unternehmen ist einer der Hauptfaktoren für das Marktwachstum. Anders ausgedrückt: Die zunehmende Anzahl von Banken, Finanzdienstleistern und Versicherungen (BFSI), Bildungseinrichtungen, Energie- und Versorgungsunternehmen, Behörden und dem öffentlichen Sektor, Gesundheitswesen und Biowissenschaften, Fertigung, Einzelhandel und E-Commerce sowie Telekommunikation und IT beeinflusst die Wachstumsrate des Marktes direkt.

  • Die wachsende Zahl von Cyberangriffen bietet kleinen Unternehmen zahlreiche Chancen

Der globale Wirtschaftsaufschwung eröffnet der Informations- und Kommunikationstechnologiebranche enorme Wachstumschancen. Mit dem steigenden Volumen an Unternehmensdaten steigt jedoch auch die Zahl cyberkrimineller Aktivitäten. Dies könnte den guten Ruf eines Unternehmens beeinträchtigen und zu Manipulationen der Daten führen. Dies schafft zusätzliche Wachstumschancen.    

Gelegenheiten:

  • Cloudbasierte Firewalls bieten viele Möglichkeiten

Zunehmende Urbanisierung, Modernisierung und Globalisierung treiben das Marktwertwachstum voran. Anders ausgedrückt: Das wachsende Bewusstsein für die Vorteile cloudbasierter  Firewalls bei kleinen und mittleren Unternehmen, insbesondere in Entwicklungsländern, bietet zahlreiche Chancen für das Marktwachstum.

Die wachsende industrielle  Infrastruktur  , die geringe Anzahl an Anbietern von Dienstleistungen, die zunehmende Nutzung zentralisierter Richtlinienverwaltung und vereinfachter Installation sowie das wachsende Volumen organisatorischer Datensätze sind weitere Faktoren, die das Marktwachstum bestimmen. Darüber hinaus wird die zunehmende Verbreitung von Hochgeschwindigkeitsinternet in Entwicklungsländern den Marktteilnehmern im Prognosezeitraum 2022 bis 2029 lukrative Möglichkeiten eröffnen. Der zunehmende Bedarf, Unternehmensnetzwerke gegen unbefugte und beispiellose Angriffe zu schützen, sowie die steigende Nutzung der Dienste aufgrund nahtloser Skalierbarkeit werden das zukünftige Marktwachstum zusätzlich fördern. 

Einschränkungen/Herausforderungen Globale künstliche Intelligenz im Fintech-Markt

  • Zunehmende Regulierungen begrenzen den Wachstumsspielraum langfristig

Die zunehmende Anzahl unterschiedlicher regulatorischer Anforderungen und das mangelnde technische Know-how werden das Marktwachstum behindern. Auch der Mangel an qualifizierten Beratern für die Entwicklung künstlicher Intelligenz im Fintech-Bereich wird den Wachstumsspielraum des Marktes einschränken. Darüber hinaus wird die Aussetzung der Geschäftstätigkeit aufgrund der Coronavirus-Pandemie weitere Hindernisse schaffen.    

  • Komplexitäten werden eine Bedrohung für die beispiellos wachsende Marktnachfrage darstellen

Die Komplexität der Einführung cloudbasierter Bereitstellungsmodelle wird das Marktwachstum beeinträchtigen. Zudem ist die Verbreitung cloudbasierter Bereitstellungsmodelle auf große Unternehmen beschränkt, was das Marktwachstum weiter beeinträchtigen wird.    

Auch das mangelnde Bewusstsein in unterentwickelten Regionen und die hohen Kosten für die Einführung werden das Marktwachstum hemmen. Der Mangel an leistungsfähigen Infrastruktureinrichtungen in den rückständigen Volkswirtschaften und mangelnde Sicherheitsbedenken werden das Marktwachstum ebenfalls beeinträchtigen.

Dieser Marktbericht zu künstlicher Intelligenz im Fintech-Bereich enthält Details zu aktuellen Entwicklungen, Handelsbestimmungen, Import-Export-Analysen, Produktionsanalysen, Wertschöpfungskettenoptimierung, Marktanteilen, dem Einfluss inländischer und lokaler Marktteilnehmer, analysiert Chancen hinsichtlich neuer Umsatzfelder, Änderungen der Marktregulierung, strategische Marktwachstumsanalysen, Marktgröße, Kategoriewachstum, Anwendungsnischen und Marktdominanz, Produktzulassungen, Produkteinführungen, geografischer Expansion und technologischen Innovationen. Um weitere Informationen zum Markt für künstliche Intelligenz im Fintech-Bereich zu erhalten, kontaktieren Sie Data Bridge Market Research für ein Analysten-Briefing . Unser Team unterstützt Sie bei fundierten Marktentscheidungen und unterstützt Sie bei Ihrem Marktwachstum.

Auswirkungen von COVID-19 auf die künstliche Intelligenz im Fintech-Markt

Der jüngste Ausbruch des Coronavirus hat sich als Segen für den Markt erwiesen. Die Pandemie führte zu einer Aussetzung der Geschäftstätigkeit aufgrund der Coronavirus-Pandemie und zu Störungen der globalen Lieferketten, Grenzbeschränkungen und Reisebeschränkungen durch staatliche Stellen. Dies führte zu einer Verlagerung der Homeoffice-Kultur bei Banken und Fintech-Agenturen. Die schnelle Einführung von künstlicher Intelligenz und maschinellem Lernen in Bankenorganisationen für die Ausführung kritischer Aufgaben weltweit eröffnete zudem gute Wachstumschancen für den Markt. Ende 2020 verzeichneten globale Unternehmen zudem steigende Investitionen in Cloud-Lösungen, um die Arbeit im Homeoffice zu erleichtern.

Jüngste Entwicklungen

  • Im April 2020 unterzeichneten Fenergo, der Anbieter von Lösungen für die digitale Transformation, Customer Journey und Client Lifecycle Management (CLM) für Finanzinstitute, und IBM eine OEM-Vereinbarung (Original Equipment Manufacturing), die es Unternehmen ermöglichen könnte, gemeinsam an Lösungen zu arbeiten, die Kunden dabei helfen können, die Vielzahl der finanziellen Risiken zu bewältigen, denen sie ausgesetzt sind.
  • Im Mai 2020 kündigte die Sentifi AG die erweiterte alternative datenbasierte Analyse an, um Investitionsmöglichkeiten zu identifizieren und Risiken zu managen. Die neue Analyselösung von Sentifi umfasst die Erkennung von Sektoren, Branchenausreißern, ESG-Ereignissen mit potenziellen Auswirkungen auf die Vermögensbewertung sowie Echtzeittrends bei Anlagethemen und bietet Anlegern die Möglichkeit, Ausreißer in ihren Portfolios zu erkennen.

Globaler Umfang der künstlichen Intelligenz im Fintech-Markt

Der Markt für künstliche Intelligenz im Fintech-Bereich ist nach Komponenten, Bereitstellungsmodus und Anwendung segmentiert. Das Wachstum dieser Segmente hilft Ihnen, schwache Wachstumssegmente in den Branchen zu analysieren und bietet Nutzern einen wertvollen Marktüberblick und Markteinblicke, die ihnen helfen, strategische Entscheidungen zur Identifizierung zentraler Marktanwendungen zu treffen.

Komponente

  • Lösungen
  • Leistungen

Künstliche Intelligenz im Fintech-Markt wird anhand ihrer Komponenten in Lösungen und Dienstleistungen segmentiert. Auf der Grundlage der Lösungen wird der Markt weiter in Softwaretools und Plattformen segmentiert. Auf der Grundlage der Dienstleistungen wird der Markt weiter in verwaltete und professionelle Lösungen segmentiert. 

Bereitstellungsmodus

  • Wolke
  • Vor Ort

Basierend auf dem Bereitstellungsmodus wurde künstliche Intelligenz im Fintech-Markt in  Cloud  und On-Premises segmentiert.

Anwendung

  • Virtueller Assistent
  • Geschäftsanalysen und Reporting
  • Analyse des Kundenverhaltens
  • Sonstiges

Auf der Grundlage der Anwendung wurde künstliche Intelligenz im Fintech-Markt in virtuelle Assistenten, Geschäftsanalysen und -berichte, Kundenverhaltensanalysen und andere unterteilt.

Künstliche Intelligenz im Fintech-Markt – Regionale Analyse/Einblicke

Die künstliche Intelligenz im Fintech-Markt wird analysiert und es werden Einblicke in die Marktgröße und Trends nach Land, Komponente, Bereitstellungsmodus und Anwendung wie oben angegeben bereitgestellt.

Die im Marktbericht über künstliche Intelligenz im Fintech-Bereich abgedeckten Länder sind die USA, Kanada und Mexiko in Nordamerika, Deutschland, Frankreich, Großbritannien, die Niederlande, die Schweiz, Belgien, Russland, Italien, Spanien, die Türkei, der Rest von Europa in Europa, China, Japan, Indien, Südkorea, Singapur, Malaysia, Australien, Thailand, Indonesien, die Philippinen, der Rest von Asien-Pazifik (APAC) in der Asien-Pazifik-Region (APAC), Saudi-Arabien, die Vereinigten Arabischen Emirate, Südafrika, Ägypten, Israel, der Rest von Nahem Osten und Afrika (MEA) als Teil von Naher Osten und Afrika (MEA), Brasilien, Argentinien und der Rest von Südamerika als Teil von Südamerika.

Nordamerika dominiert den Markt aufgrund der starken Präsenz führender Anbieter von Software und Systemen für künstliche Intelligenz sowie aufgrund gemeinsamer Investitionen staatlicher und privater Organisationen in die Entwicklung und das Wachstum von Forschungs- und Entwicklungsaktivitäten. Im asiatisch-pazifischen Raum wird im Prognosezeitraum 2022–2029 aufgrund des zunehmenden technologischen Fortschritts und der steigenden Notwendigkeit zur Verhinderung von Cyberkriminalität mit einem Wachstum gerechnet.    

Der Länderteil des Berichts enthält zudem Informationen zu einzelnen marktbeeinflussenden Faktoren und Änderungen der Marktregulierung, die die aktuellen und zukünftigen Markttrends beeinflussen. Datenpunkte wie die Analyse der nachgelagerten und vorgelagerten Wertschöpfungskette, technische Trends, die Fünf-Kräfte-Analyse nach Porter sowie Fallstudien dienen unter anderem der Prognose des Marktszenarios für einzelne Länder. Auch die Präsenz und Verfügbarkeit globaler Marken und ihre Herausforderungen aufgrund starker oder geringer Konkurrenz durch lokale und inländische Marken sowie die Auswirkungen inländischer Zölle und Handelsrouten werden bei der Prognoseanalyse der Länderdaten berücksichtigt.   

Wettbewerbslandschaft und Künstliche Intelligenz im Fintech-Marktanteilsanalyse

Die Wettbewerbslandschaft im Bereich künstliche Intelligenz im Fintech-Markt liefert detaillierte Informationen nach Wettbewerbern. Zu den Details gehören Unternehmensübersicht, Unternehmensfinanzen, Umsatz, Marktpotenzial, Investitionen in Forschung und Entwicklung, neue Marktinitiativen, globale Präsenz, Produktionsstandorte und -anlagen, Produktionskapazitäten, Stärken und Schwächen des Unternehmens, Produkteinführung, Produktbreite und -umfang sowie Anwendungsdominanz. Die oben genannten Datenpunkte beziehen sich ausschließlich auf den Fokus der Unternehmen im Bereich künstliche Intelligenz im Fintech-Markt.

Zu den wichtigsten Akteuren auf dem Markt für künstliche Intelligenz im Fintech-Bereich zählen:

  • BigML, Inc. (USA)
  • Cisco Systems, Inc. (USA)
  • FICO (USA)
  • Hewlett Packard Enterprise Development LP (USA)
  • RapidMiner, Inc. (USA)
  • SAP SE (Deutschland)
  • SAS Institute Inc. (USA)
  • Microsoft (US)
  • Google, LLC (USA)
  • Salesforce.com Inc. (USA)
  • IBM (USA)
  • Intel Corporation (USA)
  • Amazon Web Services, Inc. (USA)
  • Inbenta Technologies (USA)
  • IPsoft (USA)
  • Nuance Communications (USA)
  • ComplyAdvantage (Großbritannien)  

Forschungsmethodik: Globale künstliche Intelligenz im Fintech-Markt

Die Datenerhebung und Basisjahresanalyse erfolgt mithilfe von Datenerfassungsmodulen mit großen Stichproben. Diese Phase umfasst die Beschaffung von Marktinformationen und verwandten Daten aus verschiedenen Quellen und mit verschiedenen Strategien. Sie umfasst die Prüfung und Planung aller aus der Vergangenheit gewonnenen Daten. Ebenso werden Inkonsistenzen zwischen verschiedenen Informationsquellen untersucht. Die Marktdaten werden mithilfe marktstatistischer und kohärenter Modelle analysiert und geschätzt. Marktanteilsanalysen und Schlüsseltrendanalysen sind ebenfalls wichtige Erfolgsfaktoren im Marktbericht. Um mehr zu erfahren, fordern Sie bitte einen Analysten-Anruf an oder senden Sie Ihre Anfrage.

Die wichtigste Forschungsmethode des DBMR-Forschungsteams ist die Datentriangulation. Diese umfasst Data Mining, die Analyse der Auswirkungen von Datenvariablen auf den Markt und die primäre Validierung durch Branchenexperten. Darüber hinaus umfassen die Datenmodelle ein Vendor Positioning Grid, eine Marktzeitlinienanalyse, einen Marktüberblick und -leitfaden, ein Company Positioning Grid, eine Patentanalyse, eine Preisanalyse, eine Analyse der Marktanteile von Unternehmen, Messstandards, eine globale versus regionale Analyse sowie eine Vendor-Share-Analyse.

Um mehr über die Forschungsmethodik zu erfahren, senden Sie eine Anfrage, um mit unseren Branchenexperten zu sprechen

https://www.databridgemarketresearch.com/speak-to-analyst/?dbmr=global-ai-in-fintech-market


SKU-

Erhalten Sie Online-Zugriff auf den Bericht zur weltweit ersten Market Intelligence Cloud

  • Interaktives Datenanalyse-Dashboard
  • Unternehmensanalyse-Dashboard für Chancen mit hohem Wachstumspotenzial
  • Zugriff für Research-Analysten für Anpassungen und Abfragen
  • Konkurrenzanalyse mit interaktivem Dashboard
  • Aktuelle Nachrichten, Updates und Trendanalyse
  • Nutzen Sie die Leistungsfähigkeit der Benchmark-Analyse für eine umfassende Konkurrenzverfolgung
Demo anfordern

Inhaltsverzeichnis

1 INTRODUCTION

1.1 OBJECTIVES OF THE STUDY

1.2 MARKET DEFINITION

1.3 OVERVIEW OF GLOBAL ARTIFICIAL INTELLIGENCE IN FINTECH MARKET

1.4 CURRENCY AND PRICING

1.5 LIMITATION

1.6 MARKETS COVERED

2 MARKET SEGMENTATION

2.1 KEY TAKEAWAYS

2.2 ARRIVING AT THE GLOBAL ARTIFICIAL INTELLIGENCE IN FINTECH MARKET

2.2.1 VENDOR POSITIONING GRID

2.2.2 TECHNOLOGY LIFE LINE CURVE

2.2.3 MARKET GUIDE

2.2.4 COMPANY POSITIONING GRID

2.2.5 MULTIVARIATE MODELLING

2.2.6 STANDARDS OF MEASUREMENT

2.2.7 TOP TO BOTTOM ANALYSIS

2.2.8 VENDOR SHARE ANALYSIS

2.2.9 DATA POINTS FROM KEY PRIMARY INTERVIEWS

2.2.10 DATA POINTS FROM KEY SECONDARY DATABASES

2.3 GLOBAL ARTIFICIAL INTELLIGENCE IN FINTECH MARKET: RESEARCH SNAPSHOT

2.4 ASSUMPTIONS

3 MARKET OVERVIEW

3.1 DRIVERS

3.2 RESTRAINTS

3.3 OPPORTUNITIES

3.4 CHALLENGES

4 EXECUTIVE SUMMARY

5 PREMIUM INSIGHTS

6 GLOBAL ARTIFICIAL INTELLIGENCE IN FINTECH MARKET, BY COMPONENT

6.1 OVERVIEW

6.2 SOLUTION

6.2.1 SOFTWARE TOOL

6.2.1.1. DATA DISCOVERY

6.2.1.2. DATA QUALITY AND DATA GOVERNANCE

6.2.1.3. DATA VISUALIZATION

6.2.2 PLATFORM

6.3 SERVICES

6.3.1 MANAGED SERVICES

6.3.2 PROFESSIONAL SERVICES

7 GLOBAL ARTIFICIAL INTELLIGENCE IN FINTECH MARKET, BY DEPLOYMENT MODE

7.1 OVERVIEW

7.2 CLOUD

7.3 ON-PREMISE

8 GLOBAL ARTIFICIAL INTELLIGENCE IN FINTECH MARKET, BY TECHNOLOGY

8.1 OVERVIEW

8.2 MACHINE LEARNING

8.3 NLP

8.4 DEEP LEARNING

8.5 OTHERS

9 GLOBAL ARTIFICIAL INTELLIGENCE IN FINTECH MARKET, BY APPLICATION

9.1 OVERVIEW

9.2 VIRTUAL ASSISTANT

9.2.1 MARKET BY DEPLOYMENT MODE

9.2.1.1. CLOUD

9.2.1.2. ON-PREMISE

9.3 BUSINESS ANALYTICS AND REPORTING

9.3.1 MARKET BY TYPE

9.3.1.1. REGULATORY AND COMPLIANCE MANAGEMENT

9.3.1.2. PREDICTIVE ANALYTICS

9.3.2 MARKET BY DEPLOYMENT MODE

9.3.2.1. CLOUD

9.3.2.2. ON-PREMISE

9.4 CUSTOMER BEHAVIOURAL ANALYTICS

9.4.1 MARKET BY TYPE

9.4.1.1. CREDIT SCORING

9.4.1.2. ASSET AND PORTFOLIO MANAGEMENT

9.4.1.3. DEBT COLLECTION

9.4.1.4. INSURANCE PREMIUM

9.4.2 MARKET BY DEPLOYMENT MODE

9.4.2.1. CLOUD

9.4.2.2. ON-PREMISE

9.5 OTHERS

9.5.1 MARKET BY DEPLOYMENT MODE

9.5.1.1. CLOUD

9.5.1.2. ON-PREMISE

10 GLOBAL ARTIFICIAL INTELLIGENCE IN FINTECH MARKET, BY REGION

GLOBAL ARTIFICIAL INTELLIGENCE IN FINTECH MARKET, (ALL SEGMENTATION PROVIDED ABOVE IS REPRESENTED IN THIS CHAPTER BY COUNTRY)

10.1 NORTH AMERICA

10.1.1 U.S.

10.1.2 CANADA

10.1.3 MEXICO

10.2 EUROPE

10.2.1 GERMANY

10.2.2 FRANCE

10.2.3 U.K.

10.2.4 ITALY

10.2.5 SPAIN

10.2.6 RUSSIA

10.2.7 TURKEY

10.2.8 BELGIUM

10.2.9 NETHERLANDS

10.2.10 SWITZERLAND

10.2.11 REST OF EUROPE

10.3 ASIA PACIFIC

10.3.1 JAPAN

10.3.2 CHINA

10.3.3 SOUTH KOREA

10.3.4 INDIA

10.3.5 AUSTRALIA

10.3.6 SINGAPORE

10.3.7 THAILAND

10.3.8 MALAYSIA

10.3.9 INDONESIA

10.3.10 PHILIPPINES

10.3.11 REST OF ASIA PACIFIC

10.4 SOUTH AMERICA

10.4.1 BRAZIL

10.4.2 ARGENTINA

10.4.3 REST OF SOUTH AMERICA

10.5 MIDDLE EAST AND AFRICA

10.5.1 SOUTH AFRICA

10.5.2 EGYPT

10.5.3 SAUDI ARABIA

10.5.4 U.A.E

10.5.5 ISRAEL

10.5.6 REST OF MIDDLE EAST AND AFRICA

11 GLOBAL ARTIFICIAL INTELLIGENCE IN FINTECH MARKET,COMPANY LANDSCAPE

11.1 COMPANY SHARE ANALYSIS: GLOBAL

11.2 COMPANY SHARE ANALYSIS: NORTH AMERICA

11.3 COMPANY SHARE ANALYSIS: EUROPE

11.4 COMPANY SHARE ANALYSIS: ASIA-PACIFIC

11.5 MERGERS & ACQUISTIONS

11.6 NEW PRODUCT DEVELOPMENT AND APPROVALS

11.7 EXPANSIONS

11.8 REGULATORY CHANGES

11.9 PARTNERSHIP AND OTHER STRATEGIC DEVELOPMENTS

12 GLOBAL ARTIFICIAL INTELLIGENCE IN FINTECH MARKET, SWOT AND DBMR ANALYSIS

13 GLOBAL ARTIFICIAL INTELLIGENCE IN FINTECH MARKET, COMPANY PROFILE

13.1 IBM

13.1.1 COMPANY SNAPSHOT

13.1.2 REVENUE ANALYSIS

13.1.3 GEOGRAPHIC PRESENCE

13.1.4 PRODUCT PORTFOLIO

13.1.5 RECENT DEVELOPMENTS

13.2 INTEL CORPORATION

13.2.1 COMPANY SNAPSHOT

13.2.2 REVENUE ANALYSIS

13.2.3 GEOGRAPHIC PRESENCE

13.2.4 PRODUCT PORTFOLIO

13.2.5 RECENT DEVELOPMENTS

13.3 IPSOFT INC

13.3.1 COMPANY SNAPSHOT

13.3.2 REVENUE ANALYSIS

13.3.3 GEOGRAPHIC PRESENCE

13.3.4 PRODUCT PORTFOLIO

13.3.5 RECENT DEVELOPMENTS

13.4 COMPLY ADVANTAGE

13.4.1 COMPANY SNAPSHOT

13.4.2 REVENUE ANALYSIS

13.4.3 GEOGRAPHIC PRESENCE

13.4.4 PRODUCT PORTFOLIO

13.4.5 RECENT DEVELOPMENTS

13.5 SAMSUNG

13.5.1 COMPANY SNAPSHOT

13.5.2 REVENUE ANALYSIS

13.5.3 GEOGRAPHIC PRESENCE

13.5.4 PRODUCT PORTFOLIO

13.5.5 RECENT DEVELOPMENTS

13.6 NARRATIVE SCIENCE

13.6.1 COMPANY SNAPSHOT

13.6.2 REVENUE ANALYSIS

13.6.3 GEOGRAPHIC PRESENCE

13.6.4 PRODUCT PORTFOLIO

13.6.5 RECENT DEVELOPMENTS

13.7 MICROSOFT

13.7.1 COMPANY SNAPSHOT

13.7.2 REVENUE ANALYSIS

13.7.3 GEOGRAPHIC PRESENCE

13.7.4 PRODUCT PORTFOLIO

13.7.5 RECENT DEVELOPMENTS

13.8 AMAZON WEB SERVICES

13.8.1 COMPANY SNAPSHOT

13.8.2 REVENUE ANALYSIS

13.8.3 GEOGRAPHIC PRESENCE

13.8.4 PRODUCT PORTFOLIO

13.8.5 RECENT DEVELOPMENTS

13.9 NUANCE COMMUNICATIONS

13.9.1 COMPANY SNAPSHOT

13.9.2 REVENUE ANALYSIS

13.9.3 GEOGRAPHIC PRESENCE

13.9.4 PRODUCT PORTFOLIO

13.9.5 RECENT DEVELOPMENTS

13.1 GOOGLE

13.10.1 COMPANY SNAPSHOT

13.10.2 REVENUE ANALYSIS

13.10.3 GEOGRAPHIC PRESENCE

13.10.4 PRODUCT PORTFOLIO

13.10.5 RECENT DEVELOPMENTS

13.11 INBENTA TECHNOLOGIES

13.11.1 COMPANY SNAPSHOT

13.11.2 REVENUE ANALYSIS

13.11.3 GEOGRAPHIC PRESENCE

13.11.4 PRODUCT PORTFOLIO

13.11.5 RECENT DEVELOPMENTS

13.12 SALESFORCE.COM

13.12.1 COMPANY SNAPSHOT

13.12.2 REVENUE ANALYSIS

13.12.3 GEOGRAPHIC PRESENCE

13.12.4 PRODUCT PORTFOLIO

13.12.5 RECENT DEVELOPMENTS

13.13 NEXT IT CORP.

13.13.1 COMPANY SNAPSHOT

13.13.2 REVENUE ANALYSIS

13.13.3 GEOGRAPHIC PRESENCE

13.13.4 PRODUCT PORTFOLIO

13.13.5 RECENT DEVELOPMENTS

13.14 ONFIDO

13.14.1 COMPANY SNAPSHOT

13.14.2 REVENUE ANALYSIS

13.14.3 GEOGRAPHIC PRESENCE

13.14.4 PRODUCT PORTFOLIO

13.14.5 RECENT DEVELOPMENTS

13.15 RIPPLE LABS INC.

13.15.1 COMPANY SNAPSHOT

13.15.2 REVENUE ANALYSIS

13.15.3 GEOGRAPHIC PRESENCE

13.15.4 PRODUCT PORTFOLIO

13.15.5 RECENT DEVELOPMENTS

13.16 ACTIVE.AI

13.16.1 COMPANY SNAPSHOT

13.16.2 REVENUE ANALYSIS

13.16.3 GEOGRAPHIC PRESENCE

13.16.4 PRODUCT PORTFOLIO

13.16.5 RECENT DEVELOPMENTS

13.17 TIBCO SOFTWARE (ALPINE DATA LABS)

13.17.1 COMPANY SNAPSHOT

13.17.2 REVENUE ANALYSIS

13.17.3 GEOGRAPHIC PRESENCE

13.17.4 PRODUCT PORTFOLIO

13.17.5 RECENT DEVELOPMENTS

13.18 TRIFACTA SOFTWARE INC.

13.18.1 COMPANY SNAPSHOT

13.18.2 REVENUE ANALYSIS

13.18.3 GEOGRAPHIC PRESENCE

13.18.4 PRODUCT PORTFOLIO

13.18.5 RECENT DEVELOPMENTS

13.19 DATA MINR INC.

13.19.1 COMPANY SNAPSHOT

13.19.2 REVENUE ANALYSIS

13.19.3 GEOGRAPHIC PRESENCE

13.19.4 PRODUCT PORTFOLIO

13.19.5 RECENT DEVELOPMENTS

13.2 ZEITGOLD GMBH

13.20.1 COMPANY SNAPSHOT

13.20.2 REVENUE ANALYSIS

13.20.3 GEOGRAPHIC PRESENCE

13.20.4 PRODUCT PORTFOLIO

13.20.5 RECENT DEVELOPMENTS

13.21 SIFT SCIENCE INC.

13.21.1 COMPANY SNAPSHOT

13.21.2 REVENUE ANALYSIS

13.21.3 GEOGRAPHIC PRESENCE

13.21.4 PRODUCT PORTFOLIO

13.21.5 RECENT DEVELOPMENTS

13.22 PEFIN HOLDINGS LLC

13.22.1 COMPANY SNAPSHOT

13.22.2 REVENUE ANALYSIS

13.22.3 GEOGRAPHIC PRESENCE

13.22.4 PRODUCT PORTFOLIO

13.22.5 RECENT DEVELOPMENTS

13.23 BETTERMENT HOLDINGS

13.23.1 COMPANY SNAPSHOT

13.23.2 REVENUE ANALYSIS

13.23.3 GEOGRAPHIC PRESENCE

13.23.4 PRODUCT PORTFOLIO

13.23.5 RECENT DEVELOPMENTS

13.24 WEALTHFRONT INC.

13.24.1 COMPANY SNAPSHOT

13.24.2 REVENUE ANALYSIS

13.24.3 GEOGRAPHIC PRESENCE

13.24.4 PRODUCT PORTFOLIO

13.24.5 RECENT DEVELOPMENTS

13.25 SENTIFI AG

13.25.1 COMPANY SNAPSHOT

13.25.2 REVENUE ANALYSIS

13.25.3 GEOGRAPHIC PRESENCE

13.25.4 PRODUCT PORTFOLIO

13.25.5 RECENT DEVELOPMENTS

13.26 AYASDI

13.26.1 COMPANY SNAPSHOT

13.26.2 REVENUE ANALYSIS

13.26.3 GEOGRAPHIC PRESENCE

13.26.4 PRODUCT PORTFOLIO

13.26.5 RECENT DEVELOPMENTS

13.27 BRIGHTERION

13.27.1 COMPANY SNAPSHOT

13.27.2 REVENUE ANALYSIS

13.27.3 GEOGRAPHIC PRESENCE

13.27.4 PRODUCT PORTFOLIO

13.27.5 RECENT DEVELOPMENTS

13.28 APPZEN

13.28.1 COMPANY SNAPSHOT

13.28.2 REVENUE ANALYSIS

13.28.3 GEOGRAPHIC PRESENCE

13.28.4 PRODUCT PORTFOLIO

13.28.5 RECENT DEVELOPMENTS

13.29 NEXT IT

13.29.1 COMPANY SNAPSHOT

13.29.2 REVENUE ANALYSIS

13.29.3 GEOGRAPHIC PRESENCE

13.29.4 PRODUCT PORTFOLIO

13.29.5 RECENT DEVELOPMENTS

13.3 AIDA TECHNOLOGIES

13.30.1 COMPANY SNAPSHOT

13.30.2 REVENUE ANALYSIS

13.30.3 GEOGRAPHIC PRESENCE

13.30.4 PRODUCT PORTFOLIO

13.30.5 RECENT DEVELOPMENTS

14 CONCLUSION

15 QUESTIONNAIRE

16 RELATED REPORTS

17 ABOUT DATA BRIDGE MARKET RESEARCH

Detaillierte Informationen anzeigen Right Arrow

Forschungsmethodik

Die Datenerfassung und Basisjahresanalyse werden mithilfe von Datenerfassungsmodulen mit großen Stichprobengrößen durchgeführt. Die Phase umfasst das Erhalten von Marktinformationen oder verwandten Daten aus verschiedenen Quellen und Strategien. Sie umfasst die Prüfung und Planung aller aus der Vergangenheit im Voraus erfassten Daten. Sie umfasst auch die Prüfung von Informationsinkonsistenzen, die in verschiedenen Informationsquellen auftreten. Die Marktdaten werden mithilfe von marktstatistischen und kohärenten Modellen analysiert und geschätzt. Darüber hinaus sind Marktanteilsanalyse und Schlüsseltrendanalyse die wichtigsten Erfolgsfaktoren im Marktbericht. Um mehr zu erfahren, fordern Sie bitte einen Analystenanruf an oder geben Sie Ihre Anfrage ein.

Die wichtigste Forschungsmethodik, die vom DBMR-Forschungsteam verwendet wird, ist die Datentriangulation, die Data Mining, die Analyse der Auswirkungen von Datenvariablen auf den Markt und die primäre (Branchenexperten-)Validierung umfasst. Zu den Datenmodellen gehören ein Lieferantenpositionierungsraster, eine Marktzeitlinienanalyse, ein Marktüberblick und -leitfaden, ein Firmenpositionierungsraster, eine Patentanalyse, eine Preisanalyse, eine Firmenmarktanteilsanalyse, Messstandards, eine globale versus eine regionale und Lieferantenanteilsanalyse. Um mehr über die Forschungsmethodik zu erfahren, senden Sie eine Anfrage an unsere Branchenexperten.

Anpassung möglich

Data Bridge Market Research ist ein führendes Unternehmen in der fortgeschrittenen formativen Forschung. Wir sind stolz darauf, unseren bestehenden und neuen Kunden Daten und Analysen zu bieten, die zu ihren Zielen passen. Der Bericht kann angepasst werden, um Preistrendanalysen von Zielmarken, Marktverständnis für zusätzliche Länder (fordern Sie die Länderliste an), Daten zu klinischen Studienergebnissen, Literaturübersicht, Analysen des Marktes für aufgearbeitete Produkte und Produktbasis einzuschließen. Marktanalysen von Zielkonkurrenten können von technologiebasierten Analysen bis hin zu Marktportfoliostrategien analysiert werden. Wir können so viele Wettbewerber hinzufügen, wie Sie Daten in dem von Ihnen gewünschten Format und Datenstil benötigen. Unser Analystenteam kann Ihnen auch Daten in groben Excel-Rohdateien und Pivot-Tabellen (Fact Book) bereitstellen oder Sie bei der Erstellung von Präsentationen aus den im Bericht verfügbaren Datensätzen unterstützen.

Häufig gestellte Fragen

Der Markt ist basierend auf Globaler Markt für künstliche Intelligenz im Fintech-Bereich, nach Komponente (Lösungen und Dienste), Bereitstellungsmodus (Cloud und vor Ort), Anwendung (virtueller Assistent, Geschäftsanalyse und -berichterstattung, Kundenverhaltensanalyse und andere) – Branchentrends und Prognose bis 2029. segmentiert.
Die Größe des Globaler Markt wurde im Jahr 2021 auf 13.14 USD Billion USD geschätzt.
Der Globaler Markt wird voraussichtlich mit einer CAGR von 66.2% im Prognosezeitraum 2022 bis 2029 wachsen.
Die Hauptakteure auf dem Markt sind BigMLInc. , Cisco SystemsInc. , FICO , Hewlett Packard Enterprise Development LP , RapidMinerInc. , SAP SE , SAS Institute Inc. , Microsoft , GoogleLLC , Salesforce.com Inc. , IBM , Intel Corporation , Amazon Web ServicesInc. , Inbenta Technologies , IPsoft , Nuance Communications , and ComplyAdvantage .
Testimonial